- 相關推薦
算法的知識點總結(jié)
總結(jié)是把一定階段內(nèi)的有關情況分析研究,做出有指導性的經(jīng)驗方法以及結(jié)論的書面材料,寫總結(jié)有利于我們學習和工作能力的提高,因此我們要做好歸納,寫好總結(jié)。那么總結(jié)有什么格式呢?以下是小編幫大家整理的算法的知識點總結(jié),希望能夠幫助到大家。

算法的知識點總結(jié)1
(1)順序結(jié)構:順序結(jié)構是最簡單的算法結(jié)構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結(jié)構。
順序結(jié)構在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所
指定的操作。
(2)條件結(jié)構:條件結(jié)構是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的
算法結(jié)構。
條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行
A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結(jié)構可以有多個判斷框。
(3)循環(huán)結(jié)構:在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構,反復執(zhí)行的'處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構中一定包含條件結(jié)構。循環(huán)結(jié)構又稱重復結(jié)構,循環(huán)結(jié)構可細分為兩類:
、僖活愂钱斝脱h(huán)結(jié)構,如下左圖所示,它的功能是當給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構。
、诹硪活愂侵钡叫脱h(huán)結(jié)構,如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構。
注意:
1循環(huán)結(jié)構要在某個條件下終止循環(huán),這就需要條件結(jié)構來判斷。因此,循環(huán)結(jié)構中一定包含條件結(jié)構,但不允許“死循環(huán)”。
2在循環(huán)結(jié)構中都有一個計數(shù)變量和累加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次。
算法的知識點總結(jié)2
一、什么是簡便運算
“簡便運算”是一種特殊的計算,它運用了運算定律與數(shù)字的基本性質(zhì),從而使計算簡便,使一個很復雜的式子變得很容易計算。
二、簡便運算大全
(一)、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括號時,我們可以“帶符號搬家”。
例:256+78-56=256-56+78=200+78=278
450×9÷50=450÷50×9=9×9=81
說明:適用于加法交換律和乘法交換律。
(二)、結(jié)合律
(1)加括號法
①當一個計算題只有加減運算又沒有括號時,我們可以在加號后面直接添括號,括到括號里的運算原來是加還是加,是減還是減。但是在減號后面添括號時,括到括號里的運算,原來是加,現(xiàn)在就要變?yōu)闇p;原來是減,現(xiàn)在就要變?yōu)榧印?即在加減運算中添括號時,括號前是加號,括號里不變號,括號前是減號,括號里要變號。)
例:345-67-33=345-(67+33)=345-100=245
789-133+33=789-(133-33)=789-100=689
②當一個計算題只有乘除運算又沒有括號時,我們可以在乘號后面直接添括號,括到括號里的`運算,原來是乘還是乘,是除還是除。但是在除號后面添括號時,括到括號里的運算,原來是乘,現(xiàn)在就要變?yōu)槌?原來是除,現(xiàn)在就要變?yōu)槌恕?即在乘除運算中添括號時,括號前是乘號,括號里不變號,括號前是除號,括號里要變號。)
例:510÷17÷3=51÷(17×3)=510÷51=10
1200÷48×4=1200÷(48÷4)=1200÷12=100
(2)去括號法
①當一個計算題只有加減運算又有括號時,我們可以將加號后面的括號直接去掉,原來是加現(xiàn)在還是加,是減還是減。但是將減號后面的括號去掉時,原來括號里的加,現(xiàn)在要變?yōu)闇p;原來是減,現(xiàn)在就要變?yōu)榧印?現(xiàn)在沒有括號了,可以帶符號搬家了哈)(注:去括號是添加括號的逆運算)
②當一個計算題只有乘除運算又有括號時,我們可以將乘號后面的括號直接去掉,原來是乘還是乘,是除還是除。但是將除號后面的括號去掉時,原來括號里的乘,現(xiàn)在就要變?yōu)槌?原來是除,現(xiàn)在就要變?yōu)槌恕?現(xiàn)在沒有括號了,可以帶符號搬家了哈)(注:去掉括號是添加括號的逆運算)
算法的知識點總結(jié)3
(1)程序框圖基本概念:
、俪绦驑媹D的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形。
一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
、跇嫵沙绦蚩虻膱D形符號及其作用
學習這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
1、使用標準的圖形符號。
2、框圖一般按從上到下、從左到右的方向畫。
3、除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。判斷框具有超過一個退出點的.符號。
4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。
5、在圖形符號內(nèi)描述的語言要非常簡練清楚。
算法的知識點總結(jié)4
1、乘法分配律
、俜峙浞ɡㄌ柪锸羌踊驕p運算,與另一個數(shù)相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
②提取公因式注意相同因數(shù)的提取。
例:35×78+22×35=35×(78+22)=35×100=3500這里35是相同因數(shù)。
、圩⒁鈽嬙,讓算式滿足乘法分配律的條件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發(fā)現(xiàn)規(guī)律。還要注意還哦,有借有還,再借不難。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
2、拆分法
顧名思義,拆分法就是為了方便計算把一個數(shù)拆成幾個數(shù)。這需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆還要注意不要改變數(shù)的.大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000
125×88=125×(8×11)=125×8×11=1000×8=8000
36×25=9×4×25=9×(4×25)=9×100=900
綜上所述,在四則混合運算中,簡便運算試題的類型不外乎這幾種形式,只要掌握四則混合運算順序,同時掌握好上述簡便算法,就可以保證計算的時效。
算法的知識點總結(jié)5
1.分式混合運算法則:
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);
乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;
加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結(jié)果要求最簡。
2.分式方程的解法步驟:
同乘最簡公分母,化成整式寫清楚,
求得解后須驗根,原(根)留、增(根)舍,別含糊。
3.最簡根式的條件:
最簡根式三條件,號內(nèi)不把分母含,
冪指數(shù)(根指數(shù))要互質(zhì)、冪指比根指小一點。
4.特殊點的坐標特征:
坐標平面點(x,),橫在前來縱在后;
。ǎ,(-,+),(-,-)和(+,-),四個象限分前后;
x軸上為0,x為0在軸。
象限角的平分線:
象限角的`平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱卻相反。
平行某軸的直線:
平行某軸的直線,點的坐標有講究,
直線平行x軸,縱坐標相等橫不同;
直線平行于軸,點的橫坐標仍照舊。
5.對稱點的坐標:
對稱點坐標要記牢,相反數(shù)位置莫混淆,
x軸對稱相反,軸對稱x相反;
原點對稱最好記,橫縱坐標全變號。
算法的知識點總結(jié)6
(1)算法概念:在數(shù)學上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
(2)算法的特點:
、儆邢扌裕阂粋算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的
②確定性:算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應當是模棱兩可.
、垌樞蛐耘c正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題.
、懿恍裕呵蠼饽骋粋問題的解法不一定是的,對于一個問題可以有不同的`算法.
⑤普遍性:很多具體的問題,都可以設計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設計好的步驟加以解決.
算法的知識點總結(jié)7
1、算法的概念:
①由基本運算及規(guī)定的運算順序所構成的完整的解題步驟,或者是按照要求設計好的有限的計算序列,并且這樣的步驟或序列能解決一類問題。
、谒惴ǖ奈鍌重要特征:
、∮懈F性:一個算法必須保證執(zhí)行有限步后結(jié)束;
、⒋_切性:算法的每一步必須有確切的定義;
?尚行裕核惴ㄔ瓌t上能夠精確地運行,而且人們用筆和紙做有限次即可完成;
、ぽ斎耄阂粋算法有0個或多個輸入,以刻劃運算對象的初始條件。所謂0個輸入是指算法本身定出了初始條件。
、ポ敵觯阂粋算法有1個或多個輸出,以反映對輸入數(shù)據(jù)加工后的結(jié)果。沒有輸出的算法是毫無意義的。
2、程序框圖也叫流程圖,是人們將思考的過程和工作的順序進行分析、整理,用規(guī)定的文字、符號、圖形的組合加以直觀描述的方法
。1)程序框圖的基本符號:
(2)畫流程圖的基本規(guī)則:
、偈褂脴藴实目驁D符號
、趶纳系瓜隆淖蟮接
、坶_始符號只有一個退出點,結(jié)束符號只有一個進入點,判斷符號允許有多個退出點
、芘袛嗫梢允莾煞种ЫY(jié)構,也可以是多分支結(jié)構
⑤語言簡練
⑥循環(huán)框可以被替代
3、三種基本的邏輯結(jié)構:順序結(jié)構、條件結(jié)構和循環(huán)結(jié)構
(1)順序結(jié)構:
順序結(jié)構描述的是是最簡單的算法結(jié)構,語句與語句之間,框與框之間是按從上到下的順序進行的。
。2)條件結(jié)構:分支結(jié)構的一般形式
兩種結(jié)構的共性:
、僖粋入口,一個出口。特別注意:一個判斷框可以有兩個出口,但一個條件分支結(jié)構只有一個出口。
、诮Y(jié)構中每個部分都有可能被執(zhí)行,即對每一個框都有從入口進、出口出的路徑。
以上兩點是用來檢查流程圖是否合理的基本方法(當然,學習循環(huán)結(jié)構后,循環(huán)結(jié)構也有此特點)
。3)循環(huán)結(jié)構的一般形式:
在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構,反復執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構中一定包含條件結(jié)構。
循環(huán)結(jié)構又稱重復結(jié)構,循環(huán)結(jié)構可細分為兩類:
①如左下圖所示,它的功能是當給定的條件成立時,執(zhí)行A框,框執(zhí)行完畢后,再判斷條件是否成立,如果仍然成立,再執(zhí)行A框,如此反復執(zhí)行框,直到某一次條件不成立為止,此時不再執(zhí)行A框,從b離開循環(huán)結(jié)構。
、谌缬疑蠄D所示,它的功能是先執(zhí)行,然后判斷給定的條件是否成立,如果仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件成立為止,此時不再執(zhí)行A框,從b點離開循環(huán)結(jié)構。
高中數(shù)學算法初步知識點:算法的基本語句
(1)賦值語句:在表述一個算法時,經(jīng)常要引入變量,并賦給該變量一個值,用來表明賦給某一個變量的一個具體的確定值的語句叫做賦值語句。
賦值語句的一般格式:變量名表達式
①=的意義和作用:賦值語句中的=號,稱作賦值號。
、谫x值語句的作用:先計算出賦值號右邊表達式的值,然后把該值賦給賦值號左邊的變量,使該變量的值等于表達式的值。
、坳P于賦值語句,需要注意幾點:
、≠x值號左邊只能是變量名,而不是表達式。例如3。6=X,5=y;都是錯誤的
、①x值號左右不能對換:賦值語句是將賦值號右邊的表達式賦值給賦值號左邊的變量,例如:Y=X,表示用X的值替代變量Y原先的取值,不能改寫成X=Y,因為后者表示用Y的值替代變量X的值。
、2荒芾觅x值語句進行代數(shù)式(或符號)的演算:在賦值語句中的賦值符號右邊的表達式中的每一個變量都必須事先賦值給確定的值,不能用賦值語句進行如化簡、因式分解等演算,在一個賦值語句中只能給一個變量賦值,不能出現(xiàn)兩個或多個=。
、べx值號和數(shù)學中的等號的意義不同:賦值號左邊的變量如果原來沒有值,則在執(zhí)行賦值語句后,獲得一個值。例如X=5;Y=1等;如果原來已經(jīng)有值,則執(zhí)行該語句后,以賦值號右邊表達式的值代替該變量的原值,即將原值沖掉。例如:N=N+1在數(shù)學中是不成立的,但在賦值語句中,意思是將N的原值加1再賦給N,即N的值增加1。
計算機執(zhí)行這種形式的條件語句時,也是首先對IF后的條件進行判斷,如果條件符合,就執(zhí)行語句,如果條件不符合,則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其他語句。其對應的程序框圖為:(如下圖)
條件語句的'作用:在程序執(zhí)行過程中,根據(jù)判斷是否滿足約定的條件而決定是否需要轉(zhuǎn)換到何處去。需要計算機按條件進行分析、比較、判斷,并按判斷后的不同情況進行不同的處理。
(3)循環(huán)結(jié)構:
算法中的循環(huán)結(jié)構是由循環(huán)語句來實現(xiàn)的。對應于程序框圖中的兩種循環(huán)結(jié)構,一般程序設計語言中也有當型(WHILE型)和直到型(for型)兩種語句結(jié)構。即WHILE語句和UNTIL語句。
、賅HILE語句的一般格式是:
其中循環(huán)體是由計算機反復執(zhí)行的一組語句構成的。WHLIE后面的條件是用于控制計算機執(zhí)行循環(huán)體或跳出循環(huán)體的。
當計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與END之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復進行,直到某一次條件不符合為止。這時,計算機將不執(zhí)行循環(huán)體,直接跳到END語句后,接著執(zhí)行END之后的語句。其對應的程序結(jié)構框圖為:(如下圖)
其對應的程序結(jié)構框圖為:(如上圖)
從for型循環(huán)結(jié)構分析,計算機執(zhí)行該語句時,先把初始值賦給循環(huán)變量,記下終值和步長,并比較初值和中止,如果初值超過終值,就執(zhí)行end以后的語句,否則執(zhí)行for語句下面的語句,執(zhí)行到end語句時,計算機讓循環(huán)變量增加一個步長值,然后用增值后的循環(huán)變量值與終值比較,如果超過終值,就執(zhí)行for語句以后的語句。是先執(zhí)行循環(huán)體后進行條件判斷的循環(huán)語句。
高中數(shù)學算法初步知識點:復習點睛
1、什么是算法:一般地,算法是指在解決問題時按照某種機械程序步驟一定可以得到結(jié)果的處理過程。這種程序必須是確定的、有效的、有限的。要了解算法的基本思想、基本結(jié)構、程序框圖、基本語句、算法案例等。
2、四種基本的程序框:
4、基本算法語句:賦值語句、條件語句、循環(huán)語句;
5、解決分段函數(shù)的求值等問題,一般可采用條件結(jié)構來設計算法;
6、對于有規(guī)律的計算問題,一般可采用循環(huán)結(jié)構設計算法;
7、在WHILE語句中,是當條件滿足時執(zhí)行循環(huán)體,而在for語句中,是當條件不滿足時執(zhí)行循環(huán)體
【算法的知識點總結(jié)】相關文章:
算法基本邏輯結(jié)構精選知識點10-07
(初中)《算法設計》說課稿08-22
算法初步單元教學設計06-25
冪的運算法則09-07
《幸福的計算法》閱讀答案08-26
算法工程師的職責06-09
向量運算法則10-17