【推薦】高一物理知識點總結15篇
總結是指社會團體、企業單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經驗,找出差距,得出教訓和一些規律性認識的一種書面材料,它可以幫助我們總結以往思想,發揚成績,不妨坐下來好好寫寫總結吧。如何把總結做到重點突出呢?以下是小編整理的高一物理知識點總結,希望能夠幫助到大家。

高一物理知識點總結1
第一章運動的描述
第一節認識運動
機械運動:物體在空間中所處位置發生變化,這樣的運動叫做機械運動。
運動的特性:普遍性,永恒性,多樣性
參考系
1.任何運動都是相對于某個參照物而言的,這個參照物稱為參考系。
2.參考系的選取是自由的。
1)比較兩個物體的運動必須選用同一參考系。
2)參照物不一定靜止,但被認為是靜止的。
質點
1.在研究物體運動的過程中,如果物體的大小和形狀在所研究問題中可以忽略是,把物體簡化為一個點,認為物體的質量都集中在這個點上,這個點稱為質點。
2.質點條件:
1)物體中各點的運動情況完全相同(物體做平動)
2)物體的大小(線度)<<它通過的距離
3.質點具有相對性,而不具有絕對性。
4.理想化模型:根據所研究問題的性質和需要,抓住問題中的主要因素,忽略其次要因素,建立一種理想化的模型,使復雜的問題得到簡化。(為便于研究而建立的一種高度抽象的理想客體)
第二節時間位移
時間與時刻
1.鐘表指示的一個讀數對應著某一個瞬間,就是時刻,時刻在時間軸上對應某一點。兩個時刻之間的間隔稱為時間,時間在時間軸上對應一段。
△t=t2—t1
2.時間和時刻的單位都是秒,符號為s,常見單位還有min,h。
3.通常以問題中的初始時刻為零點。
路程和位移
1.路程表示物體運動軌跡的長度,但不能完全確定物體位置的變化,是標量。
2.從物體運動的起點指向運動的重點的有向線段稱為位移,是矢量。
3.物理學中,只有大小的物理量稱為標量;既有大小又有方向的物理量稱為矢量。
4.只有在質點做單向直線運動是,位移的大小等于路程。兩者運算法則不同。
第三節記錄物體的運動信息
打點記時器:通過在紙帶上打出一系列的點來記錄物體運動信息的儀器。(電火花打點記時器——火花打點,電磁打點記時器——電磁打點);一般打出兩個相鄰的點的時間間隔是0.02s。
第四節物體運動的速度
物體通過的路程與所用的時間之比叫做速度。
平均速度(與位移、時間間隔相對應)
物體運動的平均速度v是物體的位移s與發生這段位移所用時間t的比值。其方向與物體的位移方向相同。單位是m/s。
v=s/t
瞬時速度(與位置時刻相對應)
瞬時速度是物體在某時刻前后無窮短時間內的平均速度。其方向是物體在運動軌跡上過該點的切線方向。瞬時速率(簡稱速率)即瞬時速度的大小。
速率≥速度
第五節速度變化的快慢加速度
1.物體的加速度等于物體速度變化(vt—v0)與完成這一變化所用時間的比值
a=(vt—v0)/t
2.a不由△v、t決定,而是由F、m決定。
3.變化量=末態量值—初態量值……表示變化的大小或多少
4.變化率=變化量/時間……表示變化快慢
5.如果物體沿直線運動且其速度均勻變化,該物體的運動就是勻變速直線運動(加速度不隨時間改變)。
6.速度是狀態量,加速度是性質量,速度改變量(速度改變大小程度)是過程量。
第六節用圖象描述直線運動
勻變速直線運動的位移圖象
1.s-t圖象是描述做勻變速直線運動的物體的位移隨時間的變化關系的曲線。(不反映物體運動的軌跡)
2.物理中,斜率k≠tanα(2坐標軸單位、物理意義不同)
3.圖象中兩圖線的交點表示兩物體在這一時刻相遇。
勻變速直線運動的速度圖象
1.v-t圖象是描述勻變速直線運動的物體歲時間變化關系的圖線。(不反映物體運動軌跡)
2.圖象與時間軸的面積表示物體運動的位移,在t軸上方位移為正,下方為負,整個過程中位移為各段位移之和,即各面積的代數和。
高一物理上學期知識點整理:力學部分
高一物理上學期知識點整理:力學部分
第一章..定義:力是物體之間的相互作用。
理解要點:
(1)力具有物質性:力不能離開物體而存在。
說明:①對某一物體而言,可能有一個或多個施力物體。
②并非先有施力物體,后有受力物體
(2)力具有相互性:一個力總是關聯著兩個物體,施力物體同時也是受力物體,受力物體同時也是施力物體。
說明:①相互作用的物體可以直接接觸,也可以不接觸。
②力的大小用測力計測量。
(3)力具有矢量性:力不僅有大小,也有方向。
(4)力的作用效果:使物體的形狀發生改變;使物體的運動狀態發生變化。
(5)力的種類:
①根據力的性質命名:如重力、彈力、摩擦力、分子力、電磁力、核力等。
②根據效果命名:如壓力、拉力、動力、阻力、向心力、回復力等。
說明:根據效果命名的,不同名稱的力,性質可以相同;同一名稱的力,性質可以不同。
重力
定義:由于受到地球的吸引而使物體受到的力叫重力。
說明:①地球附近的物體都受到重力作用。
②重力是由地球的吸引而產生的,但不能說重力就是地球的吸引力。
③重力的施力物體是地球。
④在兩極時重力等于物體所受的萬有引力,在其它位置時不相等。
(1)重力的大小:G=mg
說明:①在地球表面上不同的地方同一物體的重力大小不同的,緯度越高,同一物體的重力越大,因而同一物體在兩極比在赤道重力大。
②一個物體的重力不受運動狀態的影響,與是否還受其它力也無關系。
③在處理物理問題時,一般認為在地球附近的任何地方重力的大小不變。
(2)重力的方向:豎直向下(即垂直于水平面)
說明:①在兩極與在赤道上的物體,所受重力的方向指向地心。
②重力的方向不受其它作用力的影響,與運動狀態也沒有關系。
(3)重心:物體所受重力的作用點。
重心的'確定:①質量分布均勻。物體的重心只與物體的形狀有關。形狀規則的均勻物體,它的重心就在幾何中心上。
②質量分布不均勻的物體的重心與物體的形狀、質量分布有關。
③薄板形物體的重心,可用懸掛法確定。
說明:①物體的重心可在物體上,也可在物體外。
②重心的位置與物體所處的位置及放置狀態和運動狀態無關。
③引入重心概念后,研究具體物體時,就可以把整個物體各部分的重力用作用于重心的一個力來表示,于是原來的物體就可以用一個有質量的點來代替。
彈力
(1)形變:物體的形狀或體積的改變,叫做形變。
說明:①任何物體都能發生形變,不過有的形變比較明顯,有的形變及其微小。
②彈性形變:撤去外力后能恢復原狀的形變,叫做彈性形變,簡稱形變。
(2)彈力:發生形變的物體由于要恢復原狀對跟它接觸的物體會產生力的作用,這種力叫彈力。
說明:①彈力產生的條件:接觸;彈性形變。
②彈力是一種接觸力,必存在于接觸的物體間,作用點為接觸點。
③彈力必須產生在同時形變的兩物體間。
④彈力與彈性形變同時產生同時消失。
(3)彈力的方向:與作用在物體上使物體發生形變的外力方向相反。
幾種典型的產生彈力的理想模型:
①輕繩的拉力(張力)方向沿繩收縮的方向。注意桿的不同。
②點與平面接觸,彈力方向垂直于平面;點與曲面接觸,彈力方向垂直于曲面接觸點所在切面。
③平面與平面接觸,彈力方向垂直于平面,且指向受力物體;球面與球面接觸,彈力方向沿兩球球心連線方向,且指向受力物體。
(4)大小:彈簧在彈性限度內遵循胡克定律F=kx,k是勁度系數,表示彈簧本身的一種屬性,k僅與彈簧的材料、粗細、長度有關,而與運動狀態、所處位置無關。其他物體的彈力應根據運動情況,利用平衡條件或運動學規律計算。
摩擦力
(1)滑動摩擦力:一個物體在另一個物體表面上相當于另一個物體滑動的時候,要受到另一個物體阻礙它相對滑動的力,這種力叫做滑動摩擦力。
說明:①摩擦力的產生是由于物體表面不光滑造成的。
②摩擦力具有相互性。
ⅰ滑動摩擦力的產生條件:A.兩個物體相互接觸;B.兩物體發生形變;C.兩物體發生了相對滑動;D.接觸面不光滑。
ⅱ滑動摩擦力的方向:總跟接觸面相切,并跟物體的相對運動方向相反。
說明:
①“與相對運動方向相反”不能等同于“與運動方向相反”
②滑動摩擦力可能起動力作用,也可能起阻力作用。
ⅲ滑動摩擦力的大小:F=μFN
說明:
①FN兩物體表面間的壓力,性質上屬于彈力,不是重力。應具體分析。
②μ與接觸面的材料、接觸面的粗糙程度有關,無單位。
③滑動摩擦力大小,與相對運動的速度大小無關。
ⅳ效果:總是阻礙物體間的相對運動,但并不總是阻礙物體的運動。
ⅴ滾動摩擦:一個物體在另一個物體上滾動時產生的摩擦,滾動摩擦比滑動摩擦要小得多。
(2)靜摩擦力:兩相對靜止的相接觸的物體間,由于存在相對運動的趨勢而產生的摩擦力。
說明:靜摩擦力的作用具有相互性。
ⅰ靜摩擦力的產生條件:A.兩物體相接觸;B.相接觸面不光滑;C.兩物體有形變;D.兩物體有相對運動趨勢。
ⅱ靜摩擦力的方向:總跟接觸面相切,并總跟物體的相對運動趨勢相反。
說明:
①運動的物體可以受到靜摩擦力的作用。
②靜摩擦力的方向可以與運動方向相同,可以相反,還可以成任一夾角θ。
③靜摩擦力可以是阻力也可以是動力。
ⅲ靜摩擦力的大小:兩物體間的靜摩擦力的取值范圍0<F≤Fm,其中Fm為兩個物體間的最大靜摩擦力。靜摩擦力的大小應根據實際運動情況,利用平衡條件或牛頓運動定律進行計算。
說明:
①靜摩擦力是被動力,其作用是與使物體產生運動趨勢的力相平衡,在取值范圍內是根據物體的“需要”取值,所以與正壓力無關。
②最大靜摩擦力大小決定于正壓力與最大靜摩擦因數(選學)Fm=μsFN。
ⅳ效果:總是阻礙物體間的相對運動的趨勢。
對物體進行受力分析是解決力學問題的基礎,是研究力學的重要方法,受力分析的程序是:
1.根據題意選取適當的研究對象,選取研究對象的原則是要使對物體的研究處理盡量簡便,研究對象可以是單個物體,也可以是幾個物體組成的系統。
2.把研究對象從周圍的環境中隔離出來,按照先場力,再接觸力的順序對物體進行受力分析,并畫出物體的受力示意圖,這種方法常稱為隔離法。
3.對物體受力分析時,應注意一下幾點:
(1)不要把研究對象所受的力與它對其它物體的作用力相混淆。
(2)對于作用在物體上的每一個力都必須明確它的來源,不能無中生有。
(3)分析的是物體受哪些“性質力”,不要把“效果力”與“性質力”重復分析。
力的合成
求幾個共點力的合力,叫做力的合成。
(1)力是矢量,其合成與分解都遵循平行四邊形定則。
(2)一條直線上兩力合成,在規定正方向后,可利用代數運算。
(3)互成角度共點力互成的分析
①兩個力合力的取值范圍是|F1-F2|≤F≤F1+F2
②共點的三個力,如果任意兩個力的合力最小值小于或等于第三個力,那么這三個共點力的合力可能等于零。
③同時作用在同一物體上的共點力才能合成(同時性和同體性)。
④合力可能比分力大,也可能比分力小,也可能等于某一個分力。
力的分解
求一個已知力的分力叫做力的分解。
(1)力的分解是力的合成的逆運算,同樣遵循平行四邊形定則。
(2)已知兩分力求合力有唯一解,而求一個力的兩個分力,如不限制條件有無數組解。
要得到唯一確定的解應附加一些條件:
①已知合力和兩分力的方向,可求得兩分力的大小。
②已知合力和一個分力的大小、方向,可求得另一分力的大小和方向。
③已知合力、一個分力F1的大小與另一分力F2的方向,求F1的方向和F2的大小:
若F1=Fsinθ或F1≥F有一組解
若F>F1>Fsinθ有兩組解
若F<Fsinθ無解
(3)在實際問題中,一般根據力的作用效果或處理問題的方便需要進行分解。
(4)力分解的解題思路
力分解問題的關鍵是根據力的作用效果畫出力的平行四邊形,接著就轉化為一個根據已知邊角關系求解的幾何問題。因此其解題思路可表示為:
必須注意:把一個力分解成兩個力,僅是一種等效替代關系,不能認為在這兩個分力方向上有兩個施力物體。
矢量與標量
既要由大小,又要由方向來確定的物理量叫矢量;
只有大小沒有方向的物理量叫標量
矢量由平行四邊形定則運算;標量用代數方法運算。
一條直線上的矢量在規定了正方向后,可用正負號表示其方向。
思維升華——規律方法思路
一、物體受力分析的基本思路和方法
物體的受力情況不同,物體可處于不同的運動狀態,要研究物體的運動,必須分析物體的受力情況,正確分析物體的受力情況,是研究力學問題的關鍵,是必須掌握的基本功。
分析物體的受力情況,主要是根據力的概念,從物體的運動狀態及其與周圍物體的接觸情況來考慮。具體的方法是:
1.確定研究對象,找出所有施力物體
確定所研究的物體,找出周圍對它施力的物體,得出研究對象的受力情況。
(1)如果所研究的物體為A,與A接觸的物體有B、C、D……就應該找出“B對A”、“C對A”、“D對A”、的作用力等,不能把“A對B”、“A對C”等的作用力也作為A的受力;
(2)不能把作用在其它物體上的力,錯誤的認為可通過“力的傳遞”而作用在研究的對象上;
(3)物體受到的每個力的作用,都要找到施力物體;
(4)分析出物體的受力情況后,要檢查能否使研究對象處于題目所給出的運動狀態(靜止或加速等),否則會發生多力或漏力現象。
2.按步驟分析物體受力
為了防止出現多力或漏力現象,分析物體受力情況通常按如下步驟進行:
(1)先分析物體受重力。
(2)其研究對象與周圍物體有接觸,則分析彈力或摩擦力,依次對每個接觸面(點)分析,若有擠壓則有彈力,若還有相對運動或相對運動趨勢,則有摩擦力。
(3)其它外力,如是否有牽引力、電場力、磁場力等。
3.畫出物體力的示意圖
(1)在作物體受力示意圖時,物體所受的某個力和這個力的分力,不能重復的列為物體的受力,力的合成與分解過程是合力與分力的等效替代過程,合力和分力不能同時認為是物體所受的力。
(2)作物體是力的示意圖時,要用字母代號標出物體所受的每一個力。
二、力的正交分解法
在處理力的合成和分解的復雜問題上的一種簡便的方法:正交分解法。
正交分解法:是把力沿著兩個選定的互相垂直的方向分解,其目的是便于運用普通代數運算公式來解決矢量的運算。
力的正交分解法步驟如下:
(1)正確選定直角坐標系。通常選共點力的作用點為坐標原點,坐標軸方向的選擇則應根據實際情況來確定,原則是使坐標軸與盡可能多的力重合,即是使需要向兩坐標軸分解的力盡可能少。
(2)分別將各個力投影到坐標軸上。分別求x軸和y軸上各力的投影合力Fx和Fy,其中:
Fx=F1x+F2x+F3x+……;Fy=F1y+F2y+F3y+……
注意:如果F合=0,可推出Fx=0,Fy=0,這是處理多個作用下物體平衡物體的好辦法,以后會常常用到。第2章的.高中物理‘加速度’,一般都是指‘勻加速度’,即,加速度是一個常量
1、加速度a與速度V的關系符合下式:V==at,t為時間變量,我們有
a==V/t
表明,加速度a,就是速度V在單位時間內的平均變化率。
2、V==at是一個直線方程,它相當于數學上的y=kx(V相當于y,t相當于x,a相當于k)
數學知識指出,k是特定直線y=kx的斜率,直線斜率有如下性質:
(1)不同直線(彼此不平行)的斜率,數值不等
(2)同一直線上斜率的數值,處處相等(與y和x的數值無關)
(3)直線斜率的數值,可以通過y和x的數值來求算:
k==y/x
(4)雖然k==y/x,但是,y==0,x==0,k不為零。
仿此,(1)不同運動的加速度,數值不等
(2)同一運動的加速度數值,處處相等(與V和t的數值無關)
(3)運動的加速度數值,可以通過V和t的數值來求算:
==V/t
(4)雖然a==V/t,但是V==0(由靜止開始云動),t==0,但a不為零。
.變加速運動中的物體加速度在減小而速度卻在增大,以及加速度不為零的物體速度大小卻可能不變.(這兩句怎么理解啊??舉幾個例子?
變加速運動中加速度減小速度當然是增大了,只有加速度的方向與速度方向一致那么速度就是增加的,與加速度大小沒有關系,例如從一個半圓形軌道上滑下的一個木塊,它沿水平方向的加速度是減小的,但速度是增加的。
加速度在與速度方向在同一條直線上時才改變速度的大小,有加速度那么速度就得改變,如果想讓速度大小不變,那么就得讓它的方向改變,如勻速圓周運動,加速度的大小不變且不為0,速度方向不斷改變但大小不變。
剎車方面應用題:汽車以15米每秒的速度行駛,司機發現前方有危險,在0.8s之后才能作出反應,馬上制動,這個時間稱為反應時間.若汽車剎車時能產生最大加速度為5米每二次方秒,從汽車司機發現前方有危險馬上制動剎車到汽車完全停下來,汽車所通過的距離叫剎車距離.問該汽車的剎車距離為多少?(最好附些過程,謝謝)
15米/秒加速度是5米/二次方秒那么停止需要3秒鐘
3秒通過的路程是s=15*3-1/2*5*3^2=22.5
反應時間是0.8秒s=0.8*15=12
總的距離就是22.5+12=34.5
原先“直線運動”是放在“力”之后的,在力這一章先講矢量及其算法,然后是利用矢量運算法則學習力的計算。現在倒過來了。建議你還是先學一下這這章內容。
要理解“加速度”,首先要理解“位移”和“速度”概念,位移就是物體運動前后位置的變化,即由開始位置指向結束位置的矢量。
速度就是物體位移(物體位置的變化量)與物體運動所用時間的比值,如果物體不是勻速運動(叫變速運動),速度就又有瞬時速度和平均速度之分,平均速度就是作變速運動的物體在某段時間內(或某段位移上),位移與時間的比值;瞬時速度就是物體在某一點或某一時刻的速度。
加速度就是物體速度的變化量與物體速度變化所用時間的比值,如果物體不是勻加速運動(叫變加速運動),加速度就又有瞬時加速度和平均加速度之分,平均加速度就是作變速運動的物體在某段時間內(或某段位移上),速度變化量與時間的比值;瞬時加速度就是物體在某一點或某一時刻的加速度。
對比上面速度與加速度的概念,你就會容易理解一點的。
高一物理上學期知識點整理:探究勻變速直線運動規律
高一物理上學期知識點整理:探究勻變速直線運動規律
第二章探究勻變速直線運動規律
第一、二節探究自由落體運動/自由落體運動規律
記錄自由落體運動軌跡
1.物體僅在中立的作用下,從靜止開始下落的運動,叫做自由落體運動(理想化模型)。在空氣中影響物體下落快慢的因素是下落過程中空氣阻力的影響,與物體重量無關。
2.伽利略的科學方法:觀察→提出假設→運用邏輯得出結論→通過實驗對推論進行檢驗→對假說進行修正和推廣
自由落體運動規律
自由落體運動是一種初速度為0的勻變速直線運動,加速度為常量,稱為重力加速度(g)。g=9.8m/s
重力加速度g的方向總是豎直向下的。其大小隨著緯度的增加而增加,隨著高度的增加而減少。
vt=2gs
豎直上拋運動
1.處理方法:分段法(上升過程a=-g,下降過程為自由落體),整體法(a=-g,注意矢量性)
1.速度公式:vt=v0—gt位移公式:h=v0t—gt/2
2.上升到最高點時間t=v0/g,上升到最高點所用時間與回落到拋出點所用時間相等
3.上升的最大高度:s=v0/2g
第三節勻變速直線運動
勻變速直線運動規律
1.基本公式:s=v0t+at/2
2.平均速度:vt=v0+at
3.推論:1)v=vt/2
2)S2—S1=S3—S2=S4—S3=……=△S=aT
3)初速度為0的n個連續相等的時間內S之比:
S1:S2:S3:……:Sn=1:3:5:……:(2n—1)
4)初速度為0的n個連續相等的位移內t之比:
t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)
5)a=(Sm—Sn)/(m—n)T(利用上各段位移,減少誤差→逐差法)
6)vt—v0=2as
第四節汽車行駛安全
1.停車距離=反應距離(車速×反應時間)+剎車距離(勻減速)
2.安全距離≥停車距離
3.剎車距離的大小取決于車的初速度和路面的粗糙程度
4.追及/相遇問題:抓住兩物體速度相等時滿足的臨界條件,時間及位移關系,臨界狀態(勻減速至靜止)。可用圖象法解題。
高一物理知識點總結2
物體與質點
1、質點:當物體的大小和形狀對所研究的問題而言影響不大或沒有影響時,為研究問題方便,可忽略其大小和形狀,把物體看做一個有質量的點,這個點叫做質點。
2、物體可以看成質點的條件
條件:
①研究的物體上個點的運動情況完全一致。
②物體的線度必須遠遠的大于它通過的距離。
(1)物體的形狀大小以及物體上各部分運動的差異對所研究的問題的影響可以忽略不計時就可以把物體當作質點
(2)平動的物體可以視為質點
平動的物體上各個點的運動情況都完全相同的物體,這樣,物體上任一點的運動情況與整個物體的運動情況相同,可用一個質點來代替整個物體。
1.萬有引力定律:引力常量G=6.67×Nm2/kg2
2.適用條件:可作質點的兩個物體間的相互作用;若是兩個均勻的球體,r應是兩球心間距.(物體的尺寸比兩物體的距離r小得多時,可以看成質點)
3.萬有引力定律的應用:(中心天體質量M,天體半徑R,天體表面重力加速度g)
(1)萬有引力=向心力(一個天體繞另一個天體作圓周運動時)
(2)重力=萬有引力
地面物體的重力加速度:mg=Gg=G≈9.8m/s2
高空物體的重力加速度:mg=Gg=G
4.第一宇宙速度----在地球表面附近(軌道半徑可視為地球半徑)繞地球作圓周運動的衛星的線速度,在所有圓周運動的衛星中線速度是大的。
由mg=mv2/R或由==7.9km/s
5.開普勒三大定律
6.利用萬有引力定律計算天體質量
7.通過萬有引力定律和向心力公式計算環繞速度
8.大于環繞速度的兩個特殊發射速度:第二宇宙速度、第三宇宙速度
功、功率、機械能和能源
1.做功兩要素:力和物體在力的方向上發生位移
2.功:功是標量,只有大小,沒有方向,但有正功和負功之分,單位為焦耳(J)
3.物體做正功負功問題(將α理解為F與V所成的角,更為簡單)
(1)當α=90度時,W=0.這表示力F的方向跟位移的方向垂直時,力F不做功,如小球在水平桌面上滾動,桌面對球的支持力不做功。
(2)當α0,W>0.這表示力F對物體做正功。
如人用力推車前進時,人的推力F對車做正功。
(3)當α大于90度小于等于180度時,cosα
如人用力阻礙車前進時,人的推力F對車做負功。
一個力對物體做負功,經常說成物體克服這個力做功(取絕對值)。
例如,豎直向上拋出的球,在向上運動的過程中,重力對球做了-6J的功,可以說成球克服重力做了6J的功。說了“克服”,就不能再說做了負功
4.動能是標量,只有大小,沒有方向。表達式
5.重力勢能是標量,表達式
(1)重力勢能具有相對性,是相對于選取的參考面而言的。因此在計算重力勢能時,應該明確選取零勢面。
(2)重力勢能可正可負,在零勢面上方重力勢能為正值,在零勢面下方重力勢能為負值。
6.動能定理:
W為外力對物體所做的總功,m為物體質量,v為末速度,為初速度
曲線運動
1.曲線運動的特征
(1)曲線運動的軌跡是曲線。
(2)由于運動的速度方向總沿軌跡的切線方向,又由于曲線運動的軌跡是曲線,所以曲線運動的速度方向時刻變化。即使其速度大小保持恒定,由于其方向不斷變化,所以說:曲線運動一定是變速運動。
(3)由于曲線運動的速度一定是變化的,至少其方向總是不斷變化的,所以,做曲線運動的物體的中速度必不為零,所受到的合外力必不為零,必定有加速度。(注意:合外力為零只有兩種狀態:靜止和勻速直線運動。)
曲線運動速度方向一定變化,曲線運動一定是變速運動,反之,變速運動不一定是曲線運動。
2.物體做曲線運動的條件
(1)從動力學角度看:物體所受合外力方向跟它的速度方向不在同一條直線上。
(2)從運動學角度看:物體的加速度方向跟它的速度方向不在同一條直線上。
3.勻變速運動:加速度(大小和方向)不變的運動。也可以說是:合外力不變的運動。
4.曲線運動的合力、軌跡、速度之間的.關系
(1)軌跡特點:軌跡在速度方向和合力方向之間,且向合力方向一側彎曲。
(2)合力的效果:合力沿切線方向的分力F2改變速度的大小,沿徑向的分力F1改變速度的方向。
①當合力方向與速度方向的夾角為銳角時,物體的速率將增大。
②當合力方向與速度方向的夾角為鈍角時,物體的速率將減小。
③當合力方向與速度方向垂直時,物體的速率不變。
勻變速直線運動的規律:
1、速度:勻變速直線運動中速度和時間的關系:vt=v0+at
注:一般我們以初速度的方向為正方向,則物體作加速運動時,a取正值,物體作減速運動時,a取負值;
(1)作勻變速直線運動的物體中間時刻的瞬時速度等于初速度和末速度的平均;
(2)作勻變速運動的物體中間時刻的瞬時速度等于平均速度,等于初速度和末速度的平均;
2、位移:勻變速直線運動位移和時間的關系:s=v0t+1/2at
注意:當物體作加速運動時a取正值,當物體作減速運動時a取負值;
3、推論:2as=vt2-v02
4、作勻變速直線運動的物體在兩個連續相等時間間隔內位移之差等于定植;s2-s1=aT2
5、初速度為零的勻加速直線運動:前1秒,前2秒,位移和時間的關系是:位移之比等于時間的平方比;第1秒、第2秒,的位移與時間的關系是:位移之比等于奇數比。
高一物理知識點總結3
1、電子與電荷
電子是物質中的一種基本粒子,它帶負電。電荷是人們對電的一種傳統的認識。在古代,因人們對電的本質缺乏認識,認為電是附著在物體表面上的,因而把電稱為電荷。物體“帶電”和“帶了電荷”是同一個意思。現在大家所說的電荷,一般是指帶電的物質微粒,如帶電的原子核、質子、電子及正、負離子等。顯然電荷這一概念的范圍要比電子大。
2、自由電子與自由電荷
自由電子是指脫離了原子核束縛的電子,而自由電荷既可以是自由電子,也可以是正、負離子。金屬導體中的.自由電荷是自由電子,酸、堿、鹽的水溶液中的自由電荷則主要是正、負離子。
3、帶電與導電
帶電是指物體失去電子或得到多余的電子,從而使物體對外顯電性。導電則是指導體中有電流,其實質是導體中有大量的自由電荷作定向移動。
4、導體與絕緣體
容易導電的物體叫做導體。不容易導電的物體叫做絕緣體。導體容易導電是因為導體內部有大量可以自由移動的電荷,而絕緣體不容易導電是因為絕緣體內幾乎沒有自由電荷。導體和絕緣體之間并沒有絕對的界限,在一定條件下兩者可相互轉化。如在常溫下玻璃是一種非常好的絕緣體,但在加熱到紅熾狀態時,它就變成了導體。
5、導體與導線
導體是指容易導電的物體。而導線則是指用導電性能較好的金屬制成的電線,它一般用來連接電路元件使之組成電路,一般導線的電阻很小,常常可以忽略不計。
6、電中性與電中和
電中性是指一種狀態,即原子核所帶的正電與核外電子總共帶的負電電量相等,整個原子對外不顯電性。電中和是指一種過程,當兩個帶等量異種電荷的物體相互接觸時,帶負電的物體上多余的電子轉移到帶正電的物體上,從而使兩個物體都恢復成不帶電的狀態。
7、電源與電壓
電源是指能夠提供持續電流的裝置,或定義為是把其他形式的能量轉化為電能的裝置。電源的作用是在電源的內部不斷地使正極聚集正電荷,負極聚集負電荷,以持續為電路兩端提供電壓。電壓是使電荷發生定向移動形成電流的原因。因為電路兩端的電壓是由電源提供的,所以電路中必須有電源才能有電壓,然后才能得到持續存在的電流。
8、電量與電流
電荷的多少叫做電量,電量的單位是庫侖。一個電子所帶的電量為1.6×10-19庫侖,人們把它稱為元電荷。電荷的定向移動形成電流,電流的大小可用一秒鐘內通過導體橫截面的電量的多少來表示。
高一物理知識點總結4
1、質點:
(1)沒有形狀、大小且有質量的點
(2)質點是一個理想化模型,實際并不存在
(3)一個物體是否能看成質點并不取決于這個物體的大小,而是看所研究的問題中物體的形狀大小和物體上各部分運動情況的差異是否為可以忽略的次要因素,要具體問其具體分析。
2、路程和位移
位移
路程
表示物體位置變化的物理量
質點運動軌跡的長度
矢量,可以用初位置指向末位置的有向線段來表示,既有大小又有方向
標量,只有大小,沒有方向
大小等于初位置到末位置的直線距離
大小與運動路徑有關
4、速度、平均速度和瞬時速度(A)
(1)表示物體運動快慢的物理量,它等于位移s跟發生這段位移所用時間t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物體運動的方向。在國際單位制中,速度的單位是(m/s)米/秒。
(2)平均速度是描述作變速運動物體運動快慢的物理量。一個作變速運動的物體,如果在一段時間t內的位移為s,則我們定義v=s/t為物體在這段時間(或這段位移)上的平均速度。平均速度也是矢量,其方向就是物體在這段時間內的位移的方向。
(3)瞬時速度是指運動物體在某一時刻(或某一位置)的速度。從物理含義上看,瞬時速度指某一時刻附近極短時間內的平均速度。瞬時速度的大小叫瞬時速率,簡稱速率.
5、勻速直線運動(A)
(1)定義:物體在一條直線上運動,如果在相等的時間內位移相等,這種運動叫做勻速直線運動。
根據勻速直線運動的`特點,質點在相等時間內通過的位移相等,質點在相等時間內通過的路程相等,質點的運動方向相同,質點在相等時間內的位移大小和路程相等。
6、加速度(A)
(1)加速度的定義:加速度是表示速度改變快慢的物理量,它等于速度的改變量跟發生這一改變量所用時間的比值,定義式:
(2)加速度是矢量,它的方向是速度變化的方向
(3)在變速直線運動中,若加速度的方向與速度方向相同,則質點做加速運動;若加速度的方向與速度方向相反,則則質點做減速運動。
高一物理知識點總結5
1.α粒子散射試驗結果
大多數的α粒子不發生偏轉;
少數α粒子發生了較大角度的偏轉;
極少數α粒子出現大角度的偏轉(甚至反彈回來)
2.原子核的大小:10-15~10-14m,原子的半徑約10-10m(原子的核式結構)
3.光子的發射與吸收:原子發生定態躍遷時,要輻射(或吸收)一定頻率的光子:hν=E初-E末{能級躍遷}
4.原子核的組成:質子和中子(統稱為核子),{A=質量數=質子數+中子數,Z=電荷數=質子數=核外電子數=原子序數}
5.天然放射現象:α射線(α粒子是氦原子核)、β射線(高速運動的電子流)、γ射線(波長極短的電磁波)、α衰變與β衰變、半衰期(有半數以上的原子核發生了衰變所用的時間)。γ射線是伴隨α射線和β射線產生的。
6.愛因斯坦的質能方程:E=mc2{E:能量(J),m:質量(Kg),c:光在真空中的.速度}
7.核能的計算ΔE=Δmc2{當Δm的單位用kg時,ΔE的單位為J;當Δm用原子質量單位u時,算出的ΔE單位為uc2;1uc2=931.5MeV}。
高一物理知識點總結6
1、電場線:用來形象描述電場的假想曲線,是由法拉第引入的。
理解:①、起始于正電荷(無窮遠處),終止于負電荷(無窮遠處),不是閉合曲線,不相交。
②、電場線上一點的切線方向為該點場強方向。
③、電場線的疏密程度反映了場強的大小。
④、勻強電場的電場線是平行等距的直線。
⑤、沿電場線方向電勢逐點降低,是電勢最低最快的方向。
⑦、電場線并非電荷運動的軌跡。
2、等勢面:電勢相等的點構成的.面有以下特征;
①在同一等勢面上移動電荷電場力不做功。
②等勢面與電場力垂直。
③電場中任何兩個等勢面不相交。
④電場線由高等勢面指向低等勢面。
⑤規定:相鄰等勢面間的電勢差相差,所以等勢面的疏密反映了場強的大小(勻強點電荷電場等勢面的特點)
⑥幾種等勢面的性質
A、等量同種電荷連線和中線上
連線上:中點電勢最小
中線上:由中點到無窮遠電勢逐漸減小,無窮遠電勢為零。
B、等量異種電荷連線上和中線上
連線上:由正電荷到負電荷電勢逐漸減小。
中線上:各點電勢相等且都等于零。
3、電場力做功與電勢能的關系:
①、通過電場力做功說明:電場力做正功,電勢能減小。
電場力做負功,電勢能增大。
②、正電荷:順著電場線移動時,電勢能減小。
逆著電場線移動時,電勢能增加。
負電荷:順著電場線移動時,電勢能增加。
逆著電場線移動時,電勢能減小。
③、求電荷在電場中A、B兩點具有的電勢能高低
將電荷由A點移到B點根據電場力做功情況判斷,電場力做正功,電勢能減小,電荷在A點電勢能大于在B點的電勢能,反之電場力做負功,電勢能增加,電荷在B點的電勢能小于在B點的電勢能
④、在正電荷產生的電場中正電荷在任意一點具有的電勢能都為正,負電荷在任一點具有的電勢能都為負。
在負電荷產生的電場中正電荷在任意一點具有的電勢能都為負,負電荷在任意一點具有的電勢能都為正。
高一物理知識點總結7
曲線運動·萬有引力
曲線運動
質點的運動軌跡是曲線的運動
1.曲線運動中速度的方向在時刻改變,質點在某一點(或某一時刻)的速度方向是曲線在這一點的切線方向
2.質點作曲線運動的條件:質點所受合外力的方向與其運動方向不在同一條直線上;且軌跡向其受力方向偏折;
3.曲線運動的特點
曲線運動一定是變速運動;
曲線運動的加速度(合外力)與其速度方向不在同一條直線上;
4.力的作用
力的方向與運動方向一致時,力改變速度的大小;
力的`方向與運動方向垂直時,力改變速度的方向;
力的方向與速度方向既不垂直,又不平行時,力既搞變速度大小又改變速度的方向;
運動的合成與分解
1.判斷和運動的方法:物體實際所作的運動是合運動
2.合運動與分運動的等時性:合運動與各分運動所用時間始終相等;
3.合位移和分位移,合速度和分速度,和加速度與分加速度均遵守平行四邊形定則;
高一物理知識點總結8
汽車做勻變速運動,追趕及相遇問題
在兩物體同直線上的追及、相遇或避免碰撞問題中關鍵的條件是:兩物體能否同時到達空間某位置。因此應分別對兩物體研究,列出位移方程,然后利用時間關系、速度關系、位移關系解出。
(1)追及
追和被追的兩者的速度相等常是能追上、追不上、二者距離有極值的臨界條件。
如勻減速運動的物體追從不同地點出發同向的勻速運動的物體時,若二者速度相等了,還沒有追上,則永遠追不上,此時二者間有最小距離。若二者相遇時(追上了),追者速度等于被追者的`速度,則恰能追上,也是二者避免碰撞的臨界條件;若二者相遇時追者速度仍大于被追者的速度,則被追者還有一次追上追者的機會,其間速度相等時二者的距離有一個較大值。
再如初速度為零的勻加速運動的物體追趕同一地點出發同向勻速運動的物體時,當二者速度相等時二者有最大距離,位移相等即追上。
(2)相遇
同向運動的兩物體追及即相遇,分析同(1).
相向運動的物體,當各自發生的位移的絕對值的和等于開始時兩物體間的距離時即相遇。
高一物理知識點總結9
研究靜摩擦力
1.當物體具有相對滑動趨勢時,物體間產生的摩擦叫做靜摩擦,這時產生的摩擦力叫靜摩擦力。
2.物體所受到的靜摩擦力有一個限度,這個值叫靜摩擦力。
3.靜摩擦力的方向總與接觸面相切,與物體相對運動趨勢的方向相反。
4.靜摩擦力的大小由物體的運動狀態以及外部受力情況決定,與正壓力無關,平衡時總與切面外力平衡。0≤F=f0≤fm
5.靜摩擦力的大小與正壓力接觸面的粗糙程度有關。fm=μ0?N(μ≤μ0)
6.靜摩擦有無的判斷:概念法(相對運動趨勢);二力平衡法;牛頓運動定律法;假設法(假設沒有靜摩擦)。
力的等效/替代
1.如果一個力的作用效果與另外幾個力的共同效果作用相同,那么這個力與另外幾個力可以相互替代,這個力稱為另外幾個力的合力,另外幾個力稱為這個力的分力。
2.根據具體情況進行力的替代,稱為力的合成與分解。求幾個力的合力叫力的合成,求一個力的`分力叫力的分解。合力和分力具有等效替代的關系。
力的平行四邊形定則
1.力的平行四邊形定則:如果用表示兩個共點力的線段為鄰邊作一個平行四邊形,則這兩個鄰邊的對角線表示合力的大小和方向。
2.一切矢量的運算都遵循平行四邊形定則。
高一物理知識點總結10
1、定義:直接接觸的物體間由于發生_性形變(即是相互擠壓)而產生的力、
2、產生條件:直接接觸,有_性形變。
3、方向:_力的方向與施力物體的形變方向相反(與形變恢復方向相同),作用在迫使物體發生形變的物體上。_力是法向力,力垂直于兩物體的接觸面。具體說來:(_力方向的判斷方法)
(1)_簧兩端的_力方向,與_簧中心軸線重合,指向_簧恢復原狀的方向。其_力可為拉力,可為壓力;對_簧秤只為拉力。
(2)輕繩對物體的_力方向,沿繩指向繩收縮的方向,即只為拉力。
(3)點與面接觸時_力的方向,過接觸點垂直于接觸面(或接觸面的切線方向)而指向受力物體。
(4)面與面接觸時_力的方向,垂直于接觸面而指向受力物體。
(5)球與面接觸時_力的方向,在接觸點與球心的連線上而指向受力物體。
(6)球與球相接觸的_力方向,沿半徑方向,垂直于過接觸點的公切面而指向受力物體。
(7)輕桿的_力方向可能沿桿也可能不沿桿,桿可提供拉力也可提供壓力,這一點跟繩是不同的。
(8)根據物體的運動情況。利用平行條件或動力學規律判斷、
說明:
①壓力、支持力的'方向總是垂直于接觸面(若是曲面則垂直過接觸點的切面)指向被壓或被支持的物體。
②繩的拉力方向總是沿繩指向繩收縮的方向。
③桿既可產生拉力,也可產生壓力,而且能產生不同方向的力。這是桿的受力特點。
桿一端受的_力方向不一定沿桿的方向。
高一物理知識點總結11
曲線運動
1.在曲線運動中,質點在某一時刻的速度方向是在曲線上這一點的切線方向。
2.物體做直線或曲線運動的條件:
若F的方向與物體速度v的方向相同,則物體做直線運動;
若F的方向與物體速度v的方向不同,則物體做曲線運動。
3.物體做曲線運動時合外力的方向總是指向軌跡的凹的一邊。
4.平拋運動:將物體用一定的初速度沿水平方向拋出,不計空氣阻力,物體只在重力作用下所做的運動。
分運動
在水平方向上由于不受力,將做勻速直線運動;
在豎直方向上物體的初速度為零,且只受到重力作用,物體做自由落體運動。
5.以拋點為坐標原點,水平方向為x軸,豎直方向為y軸,正方向向下.
6.①水平分速度:②豎直分速度:③t秒末的合速度
④任意時刻的運動方向可用該點速度方向與x軸的正方向的夾角表示
7.勻速圓周運動:質點沿圓周運動,在相等的時間里通過的`圓弧長度相同。
8.描述勻速圓周運動快慢的物理量
線速度v:質點通過的弧長和通過該弧長所用時間的比值,即v=s/t,單位m/s;屬于瞬時速度,既有大小,也有方向。方向為在圓周各點的切線方向上
9.勻速圓周運動是一種非勻速曲線運動,因而線速度的方向在時刻改變
角速度:ω=φ/t,單位rad/s或1/s;對某一確定的勻速圓周運動而言,角速度是恒定的
周期T,頻率:f=1/T
線速度、角速度及周期之間的關系:
10.向心力:向心力就是做勻速圓周運動的物體受到一個指向圓心的合力,向心力只改變運動物體的速度方向,不改變速度大小。
11.向心加速度:描述線速度變化快慢,方向與向心力的方向相同,12.注意:
由于方向時刻在變,所以勻速圓周運動是瞬時加速度的方向不斷改變的變加速運動。
做勻速圓周運動的物體,向心力方向總指向圓心,是一個變力。
做勻速圓周運動的物體受到的合外力就是向心力。
13.離心運動:做勻速圓周運動的物體,在所受的合力突然消失或者不足以提供圓周運動所需的向心力的情況下,就做逐漸遠離圓心的運動
高一物理知識點總結12
一、時刻與時間間隔的關系
時間間隔能展示運動的一個過程,時刻只能顯示運動的一個瞬間。對一些關于時間間隔和時刻的表述,能夠正確理解。例如:第3s末、3s時、第4s初……均為時刻;3s內、第3s、第2s至第3s內……均為時間間隔。區別:時刻在時間軸上表示一點,時間間隔在時間軸上表示一段。
二、路程與位移的關系
位移表示位置變化,用由初位置到末位置的有向線段表示,是矢量。路程是運動軌跡的長度,是標量。只有當物體做單向直線運動時,位移的大小等于路程。一般情況下,路程≥位移的大小。
三、運動圖像的含義和應用
由于圖象能直觀地表示出物理過程和各物理量之間的關系,所以在解題的'過程中被廣泛應用。在運動學中,經常用到的有x-t圖象和v—t圖象。
1.理解圖象的含義:(1)x-t圖象是描述位移隨時間的變化規律。(2)v—t圖象是描述速度隨時間的變化規律。
2.了解圖象斜率的含義:(1)x-t圖象中,圖線的斜率表示速度。(2)v—t圖象中,圖線的斜率表示加速度。
高一物理知識點總結13
一、探究形變與彈力的關系
彈性形變(撤去使物體發生形變的外力后能恢復原來形狀的物體的形變)范性形變(撤去使物體發生形變的外力后不能恢復原來形狀的物體的形變)3、彈性限度:若物體形變過大,超過一定限度,撤去外力后,無法恢復原來的形狀,這個限度叫彈性限度。
二、探究摩擦力
滑動摩擦力:一個物體在另一個物體表面上相當于另一個物體滑動的時候,要受到另一個物體阻礙它相對滑動的力,這種力叫做滑動摩擦力。
說明:摩擦力的產生是由于物體表面不光滑造成的。
三、力的合成與分解
(1)若處于平衡狀態的物體僅受兩個力作用,這兩個力一定大小相等、方向相反、作用在一條直線上,即二力平衡
(2)若處于平衡狀態的物體受三個力作用,則這三個力中的任意兩個力的合力一定與另一個力大小相等、方向相反、作用在一條直線上
(3)若處于平衡狀態的物體受到三個或三個以上的力的作用,則宜用正交分解法處理,此時的平衡方程可寫成
①確定研究對象;
②分析受力情況;
③建立適當坐標;
④列出平衡方程
四、共點力的平衡條件
1、共點力:物體受到的各力的作用線或作用線的延長線能相交于一點的力
2、平衡狀態:在共點力的作用下,物體保持靜止或勻速直線運動的狀態、
說明:這里的靜止需要二個條件,一是物體受到的合外力為零,二是物體的速度為零,僅速度為零時物體不一定處于靜止狀態,如物體做豎直上拋運動達到點時刻,物體速度為零,但物體不是處于靜止狀態,因為物體受到的合外力不為零、
3、共點力作用下物體的平衡條件:合力為零,即0
說明;
①三力匯交原理:當物體受到三個非平行的共點力作用而平衡時,這三個力必交于一點;
②物體受到N個共點力作用而處于平衡狀態時,取出其中的一個力,則這個力必與剩下的(N—1)個力的合力等大反向。
③若采用正交分解法求平衡問題,則其平衡條件為:FX合=0,FY合=0;
④有固定轉動軸的物體的平衡條件
五、作用力與反作用力
學過物理學的人都會知道牛頓第三定律,此定律主要說明了作用力和反作用的關系。在對一個物體用力的時候同時會受到另一個物體的反作用力,這對力大小相等,方向相反,并且保持在一條直線上。
高一物理必修一知識點
1、牛頓第一定律:
(1)內容:一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止、
(2)理解:
①它說明了一切物體都有慣性,慣性是物體的固有性質、質量是物體慣性大小的量度(慣性與物體的速度大小、受力大小、運動狀態無關)、
②它揭示了力與運動的關系:力是改變物體運動狀態(產生加速度)的原因,而不是維持運動的原因。
③它是通過理想實驗得出的,它不能由實際的實驗來驗證、
2、牛頓第二定律:
內容:物體的加速度a跟物體所受的合外力F成正比,跟物體的質量m成反比,加速度的方向跟合外力的方向相同、
公式:
理解:
①瞬時性:力和加速度同時產生、同時變化、同時消失、
②矢量性:加速度的方向與合外力的方向相同。
③同體性:合外力、質量和加速度是針對同一物體(同一研究對象)
④同一性:合外力、質量和加速度的單位統一用SI制主單位⑤相對性:加速度是相對于慣性參照系的。
3、牛頓第三定律:
(1)內容:
兩個物體之間的作用力和反作用力總是大小相等,方向相反,作用在一條直線上、
(2)理解:
①作用力和反作用力的同時性、它們是同時產生,同時變化,同時消失,不是先有作用力后有反作用力、
②作用力和反作用力的性質相同、即作用力和反作用力是屬同種性質的力、
③作用力和反作用力的相互依賴性:它們是相互依存,互以對方作為自己存在的前提、
④作用力和反作用力的不可疊加性、作用力和反作用力分別作用在兩個不同的物體上,各產生其效果,不可求它們的合力,兩力的作用效果不能相互抵消、
4、牛頓運動定律的適用范圍:
對于宏觀物體低速的運動(運動速度遠小于光速的運動),牛頓運動定律是成立的,但對于物體的高速運動(運動速度接近光速)和微觀粒子的運動,牛頓運動定律就不適用了,要用相對論觀點、量子力學理論處理、
易錯現象:
(1)錯誤地認為慣性與物體的速度有關,速度越大慣性越大,速度越小慣性越小;另外一種錯誤是認為慣性和力是同一個概念。
(2)不能正確地運用力和運動的關系分析物體的運動過程中速度和加速度等參量的變化。
(3)不能把物體運動的加速度與其受到的合外力的瞬時對應關系正確運用到輕繩、輕彈簧和輕桿等理想化模型上。
高一物理必考知識點
1、質點:
(1)沒有形狀、大小且有質量的點
(2)質點是一個理想化模型,實際并不存在
(3)一個物體是否能看成質點并不取決于這個物體的大小,而是看所研究的問題中物體的形狀大小和物體上各部分運動情況的差異是否為可以忽略的次要因素,要具體問其具體分析。
2、加速度(A)
(1)加速度的定義:加速度是表示速度改變快慢的物理量,它等于速度的改變量跟發生這一改變量所用時間的比值,定義式:
(2)加速度是矢量,它的方向是速度變化的方向
(3)在變速直線運動中,若加速度的方向與速度方向相同,則質點做加速運動;若加速度的方向與速度方向相反,則則質點做減速運動、
(1)表示物體運動快慢的物理量,它等于位移s跟發生這段位移所用時間t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物體運動的.方向。在國際單位制中,速度的單位是(m/s)米/秒。
(2)平均速度是描述作變速運動物體運動快慢的物理量。一個作變速運動的物體,如果在一段時間t內的位移為s,則我們定義v=s/t為物體在這段時間(或這段位移)上的平均速度。平均速度也是矢量,其方向就是物體在這段時間內的位移的方向。
(3)瞬時速度是指運動物體在某一時刻(或某一位置)的速度。從物理含義上看,瞬時速度指某一時刻附近極短時間內的平均速度。瞬時速度的大小叫瞬時速率,簡稱速率、
4、勻速直線運動(A)
(1)定義:物體在一條直線上運動,如果在相等的時間內位移相等,這種運動叫做勻速直線運動。
根據勻速直線運動的特點,質點在相等時間內通過的位移相等,質點在相等時間內通過的路程相等,質點的運動方向相同,質點在相等時間內的位移大小和路程相等。
高一物理必修一知識點總結
1、功
(1)功的概念:一個物體受到力的作用,如果在力的方向上發生一段位移,我們就說這個力對物體做了功、力和在力的方向上發生位移,是做功的兩個不可缺少的因素。
(2)功的計算式:力對物體所做的功的大小,等于力的大小、位移的大小、力和位移的夾角的余弦三者的乘積:W=Fscosα。
(3)功的單位:在國際單位制中,功的單位是焦耳,簡稱焦,符號是J、1J就是1N的力使物體在力的方向上發生lm位移所做的功。
2、功的計算
⑴恒力的功:根據公式W=Fscosα,當00≤a<900時,cosα>0,W>0,表示力對物體做正功;當α=900時,cosα=0,W=0,表示力的方向與位移的方向垂直,力不做功;當900<α<1800時,cosα<0,W<0,表示力對物體做負功,或者說物體克服力做了功。
(2)合外力的功:等于各個力對物體做功的代數和,即:W合=W1+W2+W3+……
(3)用動能定理W=ΔEk或功能關系求功、功是能量轉化的量度、做功過程一定伴隨能量的轉化,并且做多少功就有多少能量發生轉化。
3、功和沖量的比較
(1)功和沖量都是過程量,功表示力在空間上的積累效果,沖量表示力在時間上的積累效果。
(2)功是標量,其正、負表示是動力對物體做功還是物體克服阻力做功、沖量是矢量,其正、負號表示方向,計算沖量時要先規定正方向。
(3)做功的多少由力的大小、位移的大小及力和位移的夾角三個因素決定、沖量的大小只由力的大小和時間兩個因素決定、力作用在物體上一段時間,力的沖量不為零,但力對物體做的功可能為零。
4、一對作用力和反作用力做功的特點
⑴一對作用力和反作用力在同一段時間內做的總功可能為正、可能為負、也可能為零。
⑵一對互為作用反作用的摩擦力做的總功可能為零(靜摩擦力)、可能為負(滑動摩擦力),但不可能為正。
高一物理知識點總結14
1、動力學的兩類基本問題:
(1)已知物體的受力情況,確定物體的運動情況,基本解題思路是:
①根據受力情況,利用牛頓第二定律求出物體的加速度
②根據題意,選擇恰當的運動學公式求解相關的速度、位移等
(2)已知物體的運動情況,推斷或求出物體所受的未知力.基本解題思路是:
①根據運動情況,利用運動學公式求出物體的加速度
②根據牛頓第二定律確定物體所受的合外力,從而求出未知力
(3)注意點:
①運用牛頓定律解決這類問題的關鍵是對物體進行受力情況分析和運動情況分析,要善于畫出物體受力圖和運動草圖.不論是哪類問題,都應抓住力與運動的關系是通過加速度這座橋梁聯系起來的`這一關鍵
②對物體在運動過程中受力情況發生變化,要分段進行分析,每一段根據其初速度和合外力來確定其運動情況;某一個力變化后,有時會影響其他力,如彈力變化后,滑動摩擦力也隨之變化
2、關于超重和失重:
在平衡狀態時,物體對水平支持物的壓力大小等于物體的重力。當物體在豎直方向上有加速度時,物體對支持物的壓力就不等于物體的重力。當物體的加速度方向向上時,物體對支持物的壓力大于物體的重力,這種現象叫超重現象。
當物體的加速度方向向下時,物體對支持物的壓力小于物體的重力,這種現象叫失重現象。對其理解應注意以下三點:
(1)當物體處于超重和失重狀態時,物體的重力并沒有變化
(2)物體是否處于超重狀態或失重狀態,不在于物體向上運動還是向下運動,即不取決于速度方向,而是取決于加速度方向
(3)當物體處于完全失重狀態(a=g)時,平常一切由重力產生的物理現象都會完全消失,如單擺停擺、天平失效、浸在水中的物體不再受浮力、液體柱不再產生向下的壓強等
易錯現象:
(1)當外力發生變化時,若引起兩物體間的彈力變化,則兩物體間的滑動摩擦力一定發生變化,往往有些同學解題時仍誤認為滑動摩擦力不變。
(2)些同學在解比較復雜的問題時不認真審清題意,不注意題目條件的變化,不能正確分析物理過程,導致解題錯誤。
(3)一些同學對超重、失重的概念理解不清,誤認為超重就是物體的重力增加啦,失重就是物體的重力減少了。
高一物理怎么學才能學好?
學習物理非常注重過程,一個認知、理解、運用的過程。
1.認知:利用身邊的事物或現象甚至是老師敘述的一些例子來幫助自己去充分認識它,對它產生興趣。
2.理解:用理解的方式去記憶公式、定理、試驗等等。可以用形象思維等等巧妙的方法去理解和記憶。例如,什么是真空,可以這樣去理解:真空就是真的空了,什么都沒有了。
3.運用:一類是來應付考試,另一類則是來解釋身邊得一些物理現象。
所以,在學習時,首先,不要有懼怕的心理,因為你前一段沒學好的經歷可能會暗示你什么,這可能會導致你惡性循環。努力告訴自己“我能行!!!”其實心理暗示很有用哦!不過,為了給自己增加底氣,最好還是做好預習工作,做到心里有數。
其次,上課要緊跟老師的思路,適當地記些筆記,記一些書本上沒有明確闡明的甚至是遺漏的以及自己容易出錯的知識點。課下抽時間多練一練,別以任何理由來推托,從而放棄了練習的最佳時期,最后只能導致悲劇的發生。
最后一點也是最重要的一點,就是一定要做好及時總結。例如,上次考試的卷子發下來了,雖然認真訂正過了,但還要想想為什么會錯?正確答案是怎么算出來的?如果下次再考到還會錯嗎?等等。
我想,通過這些學習方法,一定能學好物理的。
高一物理知識點總結15
一、曲線運動
1、曲線運動位移:平面直角坐標系 通常設置位移方向和x軸角α
2、曲線運動速度:
①在某一點的速度下,沿曲線的切線方向
②平面直角坐標系中的速度可分解為水平速度Vx及豎直速度Vy,V2=Vx2 Vy2
3、曲線運動是變速運動(速度是矢量,任何方向或大小的變化都會導致速度的變化,在曲線運動中,速度的方向必須改變)
4、物體曲線運動的條件:物體的合力方向與其速度方向不在同一直線上
二、平拋運動(曲線運動特例)
1、定義:以一定的速度拋出物體。如果物體只受重力的影響,則此時的運動稱為拋體運動,拋體運動開始時的速度稱為初始速度。如果初始速度沿水平方向,則稱為平拋運動
2、平拋運動速度:①水平方向做勻速直線運動 初速度V0即為Vx保持不變
②垂直方向做自由落體運動 Vy=gt
③合速度:V2=Vx2 Vy2=V02 (gt)2 方向:與X軸的夾角為θ tanθ=Vy/V0=gt/V0
3、平拋運動的位移:①水平方向 X=V0t
②豎直方向y=1/2gt2 ③合位移 S2=x2 y2=(V0t)2 (1/2gt2 )2 方向:與X軸夾角α tanα=y/x=V0t/?gt2=2V0/gt
三、圓周運動
1、線速度V:①圓周運動的速度可以用物體通過的弧長與所需時間的比值來衡量 這個比值是線速 ②V=Δs/Δt 單位:m/s③勻速圓周運動:物體沿圓周運動,線速相等(tips:方向不時變化)
2、角速度ω:①物體進行圓周運動的速度也可以用它與圓心連接的速度來描述,即角速 ② 公式 ω=Δθ/Δt (角度采用弧度制) ω的單位是rad/s
3、轉速r:物體單位時間轉動的圈數 單位:轉每秒或轉每分:
4、周期T:做勻速圓周運動的物體需要一周的時間 單位:秒S
5、關系式:V=ωr(r為半徑) ω=2π/T
6、向心加速①定義:任何做勻速圓周運動的物體的加速度都指向圓心,稱為向心加速度
②表達式 a=V2/r=ω2r=(4π2/T2)r=4π2f2r=4π2n2r(n指向圓數)方向:指向圓心
7、向心力 F=mV2/r=mω2r=m(4π2/T2)r=4π2f2mr=4π2n2mr 方向:指向圓心
8、生活中的圓周運動
①鐵路彎道:
②拱橋:(1)凹形:F向=FN-G 向心加速度的方向垂直向上 (2)凸形:F向=G-FN 向心加速度方向垂直向下
③航天器失重:宇航員得到地球重力和宇宙飛船駕駛艙的支持,共同提供繞地球勻速圓周運動所需的向心力 mg-FN=mv2/R v=√gR時FN=0 宇航員失重
④離心運動(逐漸遠離圓心):(1)由于慣性,圓周運動的物體總是沿著切線飛行。當向心力消失或不足時,即離心運動
(2)應用:洗衣機脫水 加工無縫鋼管(離心制管技術)
(3)危害:公路彎道不得超速 砂輪高速旋轉 飛輪不得超速 否則會導致事故
四、開普勒定律
1、開普勒第一定律:所有行星繞太陽運動的軌道都是橢圓,太陽在橢圓的焦點上
2、開普勒第二定律:對于任何行星來說,它在相等的時間內掃過與太陽相等的'面積
三、開普勒第三定律:①所有行星軌道的半長軸三次方與其公轉周期的二次方相等 ②a—半長軸橢圓軌道 T—公轉周期 則 a3/T2=k 對于同一行星,k為常量
五、萬有引力定律
1、內容:自然界中的任何兩個物體都相互吸引,重力的方向在它們的連接上,重力的大小和物體的質量m1m2的乘積成正比,與它們之間的距離R的平方成正比
2、公式:F=Gm1m2/r2 G引力常量r的單位為米;m單位為公斤;F的單位為N
3、適用范圍:自然界任意兩個物體
4、引力常量 G=6、67×10-11N·m2/kg2 卡文迪許(英) 扭秤實驗
5、應用①地球質量:(1)不考慮地球自轉的影響,地面質量為m的物體的重力mg地球對物體的吸引力等于 即mg=GmM/R2 M=gR2/G R為地球半徑 M為地球質量
②計算天體質量:將M設置為一天體質量 r 軌道半徑是圍繞星體的軌道半徑 T為環繞周期
萬有引力充當向心力 GMm/r2=(m4π2/T2)r 得出M=4π2r3/GT2
6、宇宙航行:①第一宇宙速度:物體在地面附近以均勻的速度圓周運動 7、9KM/s(超過這個速度,離開地球。最大環繞速度,最小發射速度)
②第二宇宙速度:太陽系: 11、2KM/s
③第三宇宙速度:脫離太陽系 17、9KM/s
7、經典力學有局限性:適用于低速宏觀
六、能量
1、勢能:相互作用的能量(彈性勢能、重力勢能)取決于其位置。
2、動能:物體因運動而具有的能量
七、功(W)
1、物體工作條件:①力 ②位移發生在力的方向上
2、公式:W=FLcosα F—力 L—位移 α—力與位移的夾角
3、單位: 焦耳 J 1J=1N·m 標量
4、正功與負功 ①α=π/2 不做功 ②α<π/2 正功 ③π/2 <α<=π 負功
5、當一個物體在幾個力的共同作用下發生位移時,這些力對物體的總功率相當于每個力對物體的代數和。
八、功率(P)
1、定義:工作的速度
2、公式: P=W/t=Fv 單位 瓦特 簡稱瓦 符號:W 1W=1J/s
九、重力勢能(Ep)1、定義:物體因舉升而具有的能量
2、表達式:Ep=mgh
3、重力工作(WG):當物體運動時,重力只與其起點和終點的位置有關,而與物體運動的路徑無關 WG =mgh1-mgh2=Ep1-Ep2 重力勢能增加,重力做負功;重力勢能減少,重力做正功
4、重力勢能的相對性:物體的重力勢能總是相對于某個水平面,稱為參考平面。在參考平面上,物體的重力勢能為零。
5、勢能是系統共有的
十、彈性勢能:由于彈性的相互作用,彈性變形物體的各個部分之間也有勢能。這種勢能稱為彈性勢能
十一、動能定理
1、動能表達式:Ek=1/2mv2
2、動能定理:
①內容:力在一個過程中對物體的作用等于物體在這個過程中動能的變化
②表達式:W=Ek2-Ek1 (W指外力所做的工作)
十二、機械能守恒定律
在只有重力或彈性才能工作的物體系統中,動能和勢能可以相互轉機械能可以保持不變
十三、能量守恒定律不會憑空產生或消失。它只能從一種形式轉變為另一種形式,或從一個物體轉移到其他物體。在轉換或轉移過程中,總能量保持不變。
【高一物理知識點總結】相關文章:
【經典】高一物理知識點總結10-14
高一物理知識點總結12-11
高一物理知識點總結08-12
高一物理知識點總結07-12
高一物理知識點總結12-16
高一物理知識點總結12-18
高一物理知識點總結07-27
(精)高一物理知識點總結09-16
[精品]高一物理知識點總結09-17
高一物理知識點總結[優秀]09-13