色噜噜人体337p人体 I 超碰97观看 I 91久久香蕉国产日韩欧美9色 I 色婷婷我要去我去也 I 日本午夜a I 国产av高清怡春院 I 桃色精品 I 91香蕉国产 I 另类小说第一页 I 日操夜夜操 I 久久性色 I 日韩欧在线 I 国产深夜在线观看 I 免费的av I 18在线观看视频 I 他也色在线视频 I 亚洲熟女中文字幕男人总站 I 亚洲国产综合精品中文第一 I 人妻丰满熟av无码区hd I 新黄色网址 I 国产精品真实灌醉女在线播放 I 欧美巨大荫蒂茸毛毛人妖 I 国产一区欧美 I 欧洲亚洲1卡二卡三卡2021 I 国产亚洲欧美在线观看三区 I 97精品无人区乱码在线观看 I 欧美妇人 I 96精品在线视频 I 国产人免费视频在线观看 I 91麻豆国产福利在线观看

有理數的知識點

時間:2025-11-16 23:49:39 好文 我要投稿

有理數的知識點

  在日復一日的學習中,看到知識點,都是先收藏再說吧!知識點是知識中的最小單位,最具體的內容,有時候也叫“考點”。為了幫助大家更高效的學習,下面是小編整理的有理數的知識點,歡迎閱讀,希望大家能夠喜歡。

有理數的知識點

有理數的知識點1

  1.1正數與負數

  在以前學過的0以外的數前面加上負號“—”的數叫負數(negative number)。

  與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上“+”)。

  1.2有理數

  正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。

  整數和分數統稱有理數(rational number)。

  通常用一條直線上的點表示數,這條直線叫數軸(number axis)。

  數軸三要素:原點、正方向、單位長度。

  在直線上任取一個點表示數0,這個點叫做原點(origin)。

  只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)

  數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。

  一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

  1.3有理數的加減法

  有理數加法法則:

  1.同號兩數相加,取相同的符號,并把絕對值相加。

  2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

  3.一個數同0相加,仍得這個數。

  有理數減法法則:減去一個數,等于加這個數的相反數。

  1.4有理數的乘除法

  有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。

  乘積是1的兩個數互為倒數。

  有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。

  兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。

  求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。

  負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。

  把一個大于10的數表示成a×10的n次方的形式,使用的就是科學計數法。

  從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。

  數學最常用且非常實用的學習方法

  1、預習很重要:

  往往被忽略,理由:沒時間,看不懂,不必要等。預習是學習的必要過程,還是提高自學能力的好方法。

  2、聽講有學問:

  聽分析、聽思路、聽應用,關鍵內容一字不漏,注意記錄。

  3、做好錯題本:

  每個會學習的學生都會有。最好再加個“好題本”。發現許多同學沒有錯題本,或者是只做不用。這樣學習效果都不好。

  4、用好課外書:

  正確認識網絡課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學習的替代品。

  5、注意總結和反思:

  知識點、解題方法和技巧、經驗和教訓。

  6、接受數學思想方法的指導:

  要注意數學思想和方法的指導,站得高,才能看得遠。

  關于數學常見誤區有哪些

  1、被動學習

  許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。

  2、學不得法

  老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

  3、不重視基礎

  一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海。到正規作業或考試中不是演算出錯就是中途“卡殼”。

  4、進一步學習條件不具備

  高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。

  如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的。

  如何整理數學學科課堂筆記

  一、內容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。

  二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。

  三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的`解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發智力,培養能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。

  四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯系,掌握基本概念、公式、定理,尋找規律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。

  五、錯誤反思。學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。

  數學常用解題技巧有哪些

  第一,應堅持由易到難的做題順序。近年來高考數學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構。基礎差的就是644,先把自己能做的、會做的拿到手。這是第一點。

  第二,審題是關鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。

  第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩定下來以后再回過頭來看會頓悟,豁然開朗。

  第四,做選擇題的時候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質法(音),一些出現字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質法、數形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規范答題可以減少失分。簡單地說,規范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規范答題。

有理數的知識點2

  有理數

  有理數:①整數→正整數/0/負整數

  ②分數→正分數/負分數

  數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的`反而小。

  有理數的運算:

  加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

  減法:減去一個數,等于加上這個數的相反數。

  乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

  除法:①除以一個數等于乘以一個數的倒數。②0不能作除數。

  乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  通過上面對數學中關于有理數的知識點內容講解學習,相信可以很好的幫助同學們對數學知識的學習吧,同學們努力學習哦!

有理數的知識點3

  1、大于0的數叫做正數(positivenumber).

  2、在正數前面加上負號“-”的數叫做負數(negativenumber).

  3、整數和分數統稱為有理數(rationalnumber).

  4、人們通常用一條直線上的點表示數,這條直線叫做數軸(numberaxis).

  5、在直線上任取一個點表示數0,這個點叫做原點(origin).

  6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolutevalue).

  7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的'相反數;0的絕對值是0.

  8、正數大于0,0大于負數,正數大于負數.

  9、兩個負數,絕對值大的反而小.

  10、有理數加法法則

  (1)同號兩數相加,取相同的符號,并把絕對值相加.

  (2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0.

  (3)一個數同0相加,仍得這個數.

  11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變.

  12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變.

  13、有理數減法法則

  減去一個數,等于加上這個數的相反數.

  14、有理數乘法法則

  兩數相乘,同號得正,異號得負,并把絕對值向乘.

  任何數同0相乘,都得0.

  15、有理數中仍然有:乘積是1的兩個數互為倒數.

  16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等.

  17、三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等.

  18、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加.

  19、有理數除法法則

  除以一個不等于0的數,等于乘這個數的倒數.

  20、兩數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數,都得0.

  21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power).在an中,a叫做底數(basenumber),n叫做指數(exponeht)

  22、根據有理數的乘法法則可以得出

  負數的奇次冪是負數,負數的偶次冪是正數.

  顯然,正數的任何次冪都是正數,0的任何次冪都是0.

  23、做有理數混合運算時,應注意以下運算順序:

  (1)先乘方,再乘除,最后加減;

  (2)同級運算,從左到右進行;

  (3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行.

  24、把一個大于10數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法.

  25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximatenumber).

  26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字

有理數的知識點4

  一、學情分析:

  在此之前,本班學生已有探索有理數加法法則的經驗,多數學生能在教師指導下探索問題。由于學生已了解利用數軸表示加法運算過程,不太熟悉水位變化,故改為用數軸表示乘法運算過程。

  二、課前準備

  把學生按組間同質、組內異質分為10個小組,以便組內合作學習、組間競爭學習,形成良好的學習氣氛。

  三、教學目標

  1、知識與技能目標

  掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。

  2、能力與過程目標

  經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。

  3、情感與態度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  四、教學重點、難點

  重點:運用有理數乘法法則正確進行計算。

  難點:有理數乘法法則的探索過程,符號法則及對法則的理解。

  五、教學過程

  1、創設問題情景,激發學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?

  學生:……

  教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題(教師板書課題)

  2、小組探索、歸納法則

  (1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規定向東的方向為正方向,向西的方向為負方向。

  a.2×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結果:向運動米

  2×3=

  b.-2×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結果:向運動米

  -2×3=

  c.2×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結果:向運動米

  2×(-3)=

  d.(-2)×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結果:向運動米

  (-2)×(-3)=

  e.被乘數是零或乘數是零,結果是人仍在原處。

  (2)學生歸納法則

  a.符號:在上述4個式子中,我們只看符號,有什么規律?

  (+)×(+)=同號得

  (-)×(+)=異號得

  (+)×(-)=異號得

  (-)×(-)=同號得

  b.積的絕對值等于。

  c.任何數與零相乘,積仍為。

  (3)師生共同用文字敘述有理數乘法法則。

  3、運用法則計算,鞏固法則。

  (1)教師按課本P75例1板書,要求學生述說每一步理由。

  (2)引導學生觀察、分析例1中(3)(4)小題兩因數的關系,得出兩個有理數互為倒數,它們的積為。

  (3)學生做P76練習1(1)(3),教師評析。

  (4)教師引導學生做P75例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。多個因數相乘,積的符號由決定,當負因數個數有,積為;當負因數個數有,積為;只要有一個因數為零,積就為。

  4、討論對比,使學生知識系統化。

  有理數乘法有理數加法

  同號得正取相同的符號

  把絕對值相乘

  (-2)×(-3)=6把絕對值相加

  (-2)+(-3)=-5

  異號得負取絕對值大的加數的符號

  把絕對值相乘

  (-2)×3=-6(-2)+3=1

  用較大的絕對值減小的絕對值

  任何數與零得零得任何數

  5、分層作業,鞏固提高。

  六、教學反思:

  本節課由情景引入,使學生迅速進入角色,很快投入到探究有理數乘法法則上來,提高了本節課的教學效率。在本節課的教學實施中自始至終引導學生探索、歸納,真正體現了以學生為主體的教學理念。本節課特別注重過程教學,有利于培養學生的分析歸納能力。教學效果令人比較滿意。如果是在法則運用時,編制一些訓練符號法則的口算題,把例2放在下一課時處理,效果可能更好。

  【點評】:本節課張老師首先創設了一個密切社會生活的問題情景—抗旱,由此引入新課,并利用學生熟悉的數軸去探究有理數的乘法法則,充分體現了課程源于生活,服務于生活,學生的學習是在原有知識上的自我建構的過程等理念,教學要面向學生的生活世界和社會實踐,教學活動必須尊重學生已有的知識與經驗,學生原有的知識和經驗是學習的.基礎,學生的學習是在原有知識和經驗基礎上的自我生成的過程。

  探索有理數乘法法則是本節課的重點,同時它又是一個具有探索性又有挑戰性的問題,因此張老師在這一教學環節花了大量的時間,精心設計了問題訓練單,將學生按組間同質、組內異質的原則分學習小組開展學習合作學習,使學生經歷了法則的探索過程,獲得了深層次的情感體驗,建構知識,獲得了解決問題的方法,培養了學生的探索精神和創新能力。

  為了讓學生將獲得的新知識納入到原有的認知結構中去,便于記憶和提取,在教學的最后環節,張老師組織學生對有理數的乘法和有理數的加法進行對比,通過討論、比較使知識系統化、條理化,從而使自己的認知結構不斷地得以優化。學生自己建構知識,是建構主義學習觀的基本觀點,當新知識獲得之后,必須按一定方式加以組織,為新知識找到“家”,并為新知識“安家落戶”。

  學生是一個活生生的人,是一個發展中的人,學生間的發展是極不平衡的,為了尊重學生的差異,以學生個體發展為本,張老師在教學中利用學生的個人性格不同,采用異質分組,使不同性格的學生組對交流、互換角色,達到了性格互補的目的。采取分層作業的方式,讓不同的人在數學學習中得到了不同的發展,使每個人的認識都得到完善,這正是新課程發展的核心理念──為了每一位學生的發展的具體體現。

  本節課我們也同時看到在新課引入和法則探究兩個教學環節中,張老師的設計與教材完全不同,充分體現了教師是用教材,而不是教教材,這也是新課程所倡導的教學理念。教師“教教科書”是傳統的“教書匠”的表現,“用教科書教”才是現代教師應有的姿態。我們教師應從學生實際出發,因材施教,創造性地使用教材,大膽對教材內容進行取舍、深加工、再創造,設計出活生生的、豐富多彩的課來,充分有效地將教材的知識激活,形成有教師個性的教材知識。既要有能力把問題簡明地闡述清楚,同時也要有能力引導學生去探索、去自主學習。

有理數的知識點5

  第一章有理數

  1.

  (1)正數:大于零的數;

  (2)負數:小于零的數(在正數前面加上負號“—”的數);

  注意:

  ①0既不是正數也不是負數,它是正負數的分界點;

  ②對于正數和負數,不能簡單理解為帶“+”號的數是正數,帶“—”號的數是負數;

  字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。

  正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。

  2.有理數的概念

  ⑴正整數、

  0、負整數統稱為整數;

  ⑵正分數和負分數統稱為分數;

  ⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

  理解:只有能化成分數的數才是有理數。

  ①π是無限不循環小數,不能寫成分數形式,不是有理數;

  ②有限小數和無限循環小數都可化成分數,都是有理數;

  -a不一定是負數,+a也不一定是正數;

  3.有理數的分類

  ⑴按有理數的定義分類

  ⑵按性質符號來分

  正整數 正整數

  整數0 正有理數

  負整數 正分數

  有理數 有理數0 (0不能忽視)

  正分數 負整數

  分數 負有理數

  負分數 負分數

  總結:

  ①正整數、0統稱為非負整數(也叫自然數)

  ②負整數、0統稱為非正整數

  ③正有理數、0統稱為非負有理數

  ④負有理數、0統稱為非正有理數

  0是整數不是分數。

  4.規定了原點,正方向,單位長度的直線叫做數軸。

  注意:⑴數軸是一條向兩端無限延伸的直線;

  ⑵原點、正方向、單位長度是數軸的三要素,三者缺一不可;

  ⑶同一數軸上的單位長度要統一。

  (4)數軸一般取右(或向上)為正方向,數軸的原點的選定,正方向的取向,單位長度大小的確定都是根據實際需要規定的。

  5.數軸上的點與有理數的關系

  ⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右側的點表示,負有理數可用原點左側的點表示,0用原點表示。

  ⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)

  6.數軸的畫法

  (1)畫一條直線,在這條直線上任取一個點作為原點;

  (2)通常規定直線上從原點向右(或左)為正方向,從原點向左(或右)為負方向;

  (3)選取適當的長度為單位長度,直線上從原點向右,每隔一個單位長度取一個點,依次表示1,2,3,…;從原點向左,用類似的方法依次表示-1,-2,-3,….

  7.利用數軸表示兩數大小

  ⑴在數軸上數的大小比較,右邊的`數總比左邊的數大;

  ⑵正數都大于0,負數都小于0,正數大于負數;

  ⑶兩個負數比較,距離原點遠的數比距離原點近的數小。

  8.數軸上特殊的最大(小)數

  ⑴最小的自然數是0,無最大的自然數;

  ⑵最小的正整數是1,無最大的正整數;

  ⑶最大的負整數是-1,無最小的負整數

  9.a可以表示什么數

  ⑴a>0表示a是正數;反之,a是正數,則a>0;

  ⑵a

有理數的知識點6

  一個整數a和一個非零整數b的比是有理數(rationalnumber)正數與負數

  像3,2,1。2這樣大于0的數叫做正數,根據需要,也可以在正數前面加上“+”(正)號;像—3,—2,—2。5這樣在正數前面加上“—”(負)號的數叫做負數;0既不是正數,也不是負數。

  有理數加法

  1、有理數的加法法則(有理數加法運算律):

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

  (2)絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0;

  (3)一個數同0相加,仍得這個數。

  2、方法與技巧:進行有理數的加法運算時,要先觀察相加兩數的符號,再確定和的符號,最后計算和的絕對值。

  數學軸

  可以用一條直線上的點表示數,這條直線叫做數軸(numberaxis)。

  原點(origin)、正方向(positivedirection)和單位長度(unitlength)稱為數軸三要素,它們缺一不可。

  【數軸與實數】

  數軸上的點與實數一一對應。

  【數軸的性質】

  數軸上從左往右的點表示的數是從小往大的順序,那么利用數軸可以比較數的大小。在數軸上表示的兩個數右邊的'總比左邊的大;正數都大于零;負數都小于零;正數大于一切負數。另外由于數軸是一條直線,是可以向兩端無限延伸的,因此沒有最小的負數,也沒有最大的正數。

  絕對值

  絕對值的代數定義:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;零的絕對值是零。

  絕對值的幾何定義:在數軸上表示一個數的點離開原點的距離,叫做這個數的絕對值。

  絕對值求法:一個正數a的絕對值是它本身a;一個負數a的絕對值是它的相反數—a;零的絕對值是零。

  絕對值表示法:a的絕對值用“|a|”表示。讀作“a的絕對值。

有理數的知識點7

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

  (2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數與0相加,仍得這個數.

  2.有理數加法的運算律:

  (1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

  3.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).

  4.有理數乘法法則:

  (1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數同零相乘都得零;

  (3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

  5.有理數乘法的`運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  6.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數, .

  7.有理數乘方的法則:

  (1)正數的任何次冪都是正數;

有理數的知識點8

  1.有理數:

  (1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;

  (2)有理數的分類:①②

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

  (4)自然數0和正整數;a>0a是正數;a<0a是負數;

  a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.

  2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

  3.相反數:

  (1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

  (2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

  (3)相反數的和為0a+b=0a、b互為相反數.

  4.絕對值:

  (1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經常分類討論;

  (3);;

  (4)|a|是重要的非負數,即|a|≥0;注意:|a|·|b|=|a·b|,.

  5.有理數比大小:

  (1)正數的絕對值越大,這個數越大;

  (2)正數永遠比0大,負數永遠比0小;

  (3)正數大于一切負數;

  (4)兩個負數比大小,絕對值大的反而小;

  (5)數軸上的兩個數,右邊的數總比左邊的數大;

  (6)大數-小數>0,小數-大數<0.

  6.互為倒數:

  乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;倒數是本身的數是±1;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.

  7.有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

  (2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數與0相加,仍得這個數.

  8.有理數加法的.運算律:

  (1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).

  9.有理數減法法則:

  減去一個數,等于加上這個數的相反數;即a-b=a+(-b).

  10有理數乘法法則:

  (1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數同零相乘都得零;

  (3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

  11有理數乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.

  12.有理數除法法則:

  除以一個數等于乘以這個數的倒數;注意:零不能做除數,.

  13.有理數乘方的法則:

  (1)正數的任何次冪都是正數;

  (2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;

  (3)a2是重要的非負數,即a2≥0;若a2+|b|=0a=0,b=0;

  (4)據規律底數的小數點移動一位,平方數的小數點移動二位.

  15.科學記數法:

  把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.

  16.近似數的精確位:

  一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.

  17.有效數字:

  從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.

  18.混合運算法則:

  先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.

  19.特殊值法:

  是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.

有理數的知識點9

  ①求n個相同因數的積的運算,叫乘方,乘方的結果叫冪。在a的n次方中,a叫做底數,n叫做指數。負數的奇次冪是負數,負數的偶次冪是正數(負奇負,負偶正)。正數的任何次冪都是正數,0的任何次冪都是0。新- 課- 標-第 -一- 網

  ②偶次方等于一個正數的值有兩個(兩個互為相反數)如:a2=4,a=2或a=-2

  注意:|a|+b2=0 得:a=0 且 b=0

  強記:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;

  -13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8

  ③有理數的混合運算法則:先乘方,再乘除,最后加減;同級運算,

  從左到右進行;如有括號,先做括號內的`運算,按小括號、中括號、

  大括號依次進行。注意:12-4×5=12-20(不能把-變+)

  ④把一個大于10的數表示成a×10的n次方的形式,使用的就是科學計數法,注意a的范圍為1≤a n比原整數位減1。(注意科學計數法與原數的互劃。

  ⑤四舍五入到哪一位就是精確到哪一位,四舍五入時望后多看一位采用四舍五入。比如:3.5449精確到0.01就是3.54而不是3.55. (再如: 2.40萬:精確到百位;6.5×104精確到千位,有數量級和科學計數法的要還原成原數,看數量級和科學計數法的最后一個數)。

有理數的知識點10

  一、目標與要求

  1.了解正數與負數是從實際需要中產生的。

  2.能正確判斷一個數是正數還是負數,明確0既不是正數也不是負數。

  3.理解有理數除法的意義,熟練掌握有理數除法法則,會進行有理數的除法運算;

  4.了解倒數概念,會求給定有理數的倒數;

  5.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過有理數的除法

  二、重點

  正、負數的概念;

  正確理解數軸的概念和用數軸上的點表示有理數;

  有理數的加法法則;

  除法法則和除法運算。

  三、難點

  負數的概念、正確區分兩種不同意義的量;

  數軸的概念和用數軸上的點表示有理數;

  異號兩數相加的法則;

  根據除法是乘法的逆運算,歸納出除法法則及商的符號的確定。

  四、知識框架

  五、知識點、概念總結

  1.正數:比0大的數叫正數。

  2.負數:比0小的數叫負數。

  3.有理數:

  (1)凡能寫成q/p(p,q為整數且p不等于0)形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。

  注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

  (2)有理數的分類:

  4.數軸:數軸是規定了原點、正方向、單位長度的一條直線。

  5.相反數:

  (1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

  (2)相反數的和為0等價于a+b=0等價于a、b互為相反數。

  6.絕對值:

  (1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;

  注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

  (2)絕對值可表示為:

  絕對值的問題經常分類討論;

  7.有理數比大小:

  (1)正數的絕對值越大,這個數越大;

  (2)正數永遠比0大,負數永遠比0小;

  (3)正數大于一切負數;

  (4)兩個負數比大小,絕對值大的反而小;

  (5)數軸上的兩個數,右邊的數總比左邊的數大;

  (6)大數-小數0,小數-大數0.

  8.互為倒數:乘積為1的兩個數互為倒數;

  注意:0沒有倒數;若a0,那么a的倒數是1/a;若ab=1等價于a、b互為倒數;若ab=-1等價于a、b互為負倒數。

  9. 有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

  (2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數與0相加,仍得這個數。

  10.有理數加法的運算律:

  (1)加法的交換律:a+b=b+a ;

  (2)加法的結合律:(a+b)+c=a+(b+c)。

  11.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b)。

  12.有理數乘法法則:

  (1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數同零相乘都得零;

  (3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。

  13. 有理數乘法的運算律:

  (1)乘法的交換律:ab=ba;

  (2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  14.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,即a/0無意義。

  15.有理數乘方的法則:

  (1)正數的任何次冪都是正數;

  (2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n ,當n為正偶數時:(-a)n=an 或(a-b)n=(b-a)n 。

  16.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數,相同因式的'個數叫做指數,乘方的結果叫做冪;

  17.科學記數法:

  把一個大于10的數記成a10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。

  18.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。

  19.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。

  20.混合運算法則:先乘方,后乘除,最后加減。

  (參考教材:初中數學七年級人教版)

  練習:

  1.若密云水庫的水位比標準水位高出3cm記為+3cm,某月的水位記錄中顯示,1日水位為-5cm,2日水位為-1cm,3日水位為+4cm,則()

  A.1日與2日水位相差6cm B.1日與3日水位相差1cm C.2日與3日水位相差5cm D.均不正確

  2.籃球的質量,超過標準質量的克數記為正數,不足標準質量的克數記為負數,檢查的結果如下表:

  最接近標準質量的是_________號籃球;質量最大的籃球比質量最小的籃球重____________克.

  3.判斷:1)最小的自然數是1;2)最小的整數是1;3)一個有理數的倒數等于它本身,則這個數是1;

  以上初一(七年級)上冊數學知識點:有理數是由數學網整理的,希望可以幫助大家,更多的精彩內容請查看數學網。

有理數的知識點11

  1、大于0的數叫做正數。

  2、在正數前面加上負號'—'的數叫做負數。

  3、整數和分數統稱為有理數。

  4、人們通常用一條直線上的點表示數,這條直線叫做數軸。

  5、在直線上任取一個點表示數0,這個點叫做原點。

  6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。

  7、由絕對值的定義可知:

  (1)一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。

  (2)正數大于0,0大于負數,正數大于負數。

  (3)兩個負數,絕對值大的反而小。

  8、有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

  (3)一個數同0相加,仍得這個數。

  9、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。

  10、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。

  11、有理數減法法則

  減去一個數,等于加上這個數的相反數。

  12、有理數乘法法則

  兩數相乘,同號得正,異號得負,并把絕對值向乘。

  任何數同0相乘,都得0。

  13、有理數中仍然有:乘積是1的兩個數互為倒數。

  14、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。

  三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。

  15、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。

  16、有理數除法法則

  除以一個不等于0的數,等于乘這個數的倒數。

  兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。

  17、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數

  18、根據有理數的乘法法則可以得出

  負數的奇次冪是負數,負數的偶次冪是正數。

  顯然,正數的任何次冪都是正數,0的任何次冪都是0。

  19、做有理數混合運算時,應注意以下運算順序:

  先乘方,再乘除,最后加減;

  同級運算,從左到右進行;

  如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

  20、把一個大于10數表示成a×10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。

  21、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數。

  22、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字。

  初中數學知識點

  加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

  減法:減去一個數,等于加上這個數的相反數。

  乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。

  除法:①除以一個數等于乘以一個數的倒數。②0不能作除數。

  乘方:求N個相同因數A的'積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  初中生如何能輕松學好數學

  學好初中數學認真聽課很重要

  初中學生想要學好數學,在課上一定要認真聽老師講課。老師在課堂上講的是非常重要的知識點,但是在初中數學課上選擇做筆記并不是一個正確的做法。

  在初中數學課上你需要做的就是跟住老師的思維,學好老師的思維方式,這個階段要培養自己的數學邏輯思維能力。大部分的初中數學老師,對于這門學科都有自己的見解,所以跟住老師的思路久而久之就會逐漸轉換成自己解題的思路。

  初中生學習數學要會獨立思考

  初一初二是數學開竅的階段,在解題上初中生一定要學會自己獨立去思考。你需要做的就是不斷的做題來培養自己的這一能力。而在積累到一定的數量之后,你的這種獨立解題的能力是別人無法超越的。這個培養過程很簡單也很短,只要你得到一點的成就感對于初中數學你就會充滿自信。

  其實,學好初中數學關鍵在于自己的真實能力,而不是形式。很多的初中生數學筆記一大堆,最后考試的成績也就是那樣。在學習上初中數學也好,其他科目也罷,不要講究形式感,關鍵是要把一個個的問題和知識學透。不反對記筆記,但是不要一味的做筆記,聽初中數學課是需要過腦子的。

有理數的知識點12

  1.1正數和負數

  以前學過的0以外的數前面加上負號-的書叫做負數。

  以前學過的0以外的數叫做正數。

  數0既不是正數也不是負數,0是正數與負數的分界。

  在同一個問題中,分別用正數和負數表示的量具有相反的意義

  1.2有理數

  1.2.1有理數

  正整數、0、負整數統稱整數,正分數和負分數統稱分數。

  整數和分數統稱有理數。

  1.2.2數軸

  規定了原點、正方向、單位長度的直線叫做數軸。

  數軸的作用:所有的有理數都可以用數軸上的點來表達。

  注意事項:⑴數軸的原點、正方向、單位長度三要素,缺一不可。

  ⑵同一根數軸,單位長度不能改變。

  一般地,設是一個正數,則數軸上表示a的點在原點的右邊,與原點的距離是a個單位長度;表示數-a的點在原點的左邊,與原點的距離是a個單位長度。

  1.2.3相反數

  只有符號不同的兩個數叫做互為相反數。

  數軸上表示相反數的兩個點關于原點對稱。

  在任意一個數前面添上-號,新的數就表示原數的相反數。

  1.2.4絕對值

  一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。

  一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。

  在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小于右邊的數。

  比較有理數的大小:⑴正數大于0,0大于負數,正數大于負數。

  ⑵兩個負數,絕對值大的反而小。

  1.3有理數的加減法

  1.3.1有理數的加法

  有理數的加法法則:

  ⑴同號兩數相加,取相同的符號,并把絕對值相加。

  ⑵絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。

  ⑶一個數同0相加,仍得這個數。

  兩個數相加,交換加數的位置,和不變。

  加法交換律:a+b=b+a

  三個數相加,先把前面兩個數相加,或者先把后兩個數相加,和不變。

  加法結合律:(a+b)+c=a+(b+c)

  1.3.2有理數的減法

  有理數的減法可以轉化為加法來進行。

  有理數減法法則:

  減去一個數,等于加這個數的相反數。

  a-b=a+(-b)

  1.4有理數的乘除法

  1.4.1有理數的乘法

  有理數乘法法則:

  兩數相乘,同號得正,異號得負,并把絕對值相乘。

  任何數同0相乘,都得0。

  乘積是1的兩個數互為倒數。

  幾個不是0的數相乘,負因數的個數是偶數時,積是正數;負因數的個數是奇數時,積是負數。

  兩個數相乘,交換因數的位置,積相等。

  ab=ba

  三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。

  (ab)c=a(bc)

  一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。

  a(b+c)=ab+ac

  數字與字母相乘的書寫規范:

  ⑴數字與字母相乘,乘號要省略,或用

  ⑵數字與字母相乘,當系數是1或-1時,1要省略不寫。

  ⑶帶分數與字母相乘,帶分數應當化成假分數。

  用字母x表示任意一個有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個式子的項,2和3分別是著兩項的系數。

  一般地,合并含有相同字母因數的式子時,只需將它們的系數合并,所得結果作為系數,再乘字母因數,即

  ax+bx=(a+b)x

  上式中x是字母因數,a與b分別是ax與bx這兩項的系數。

  去括號法則:

  括號前是+,把括號和括號前的+去掉,括號里各項都不改變符號。

  括號前是-,把括號和括號前的-去掉,括號里各項都改變符號。

  括號外的因數是正數,去括號后式子各項的符號與原括號內式子相應各項的符號相同;括號外的因數是負數,去括號后式子各項的符號與原括號內式子相應各項的符號相反。

  1.4.2有理數的除法

  有理數除法法則:

  除以一個不等于0的數,等于乘這個數的.倒數。

  ab=a (b0)

  兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。

  因為有理數的除法可以化為乘法,所以可以利用乘法的運算性質簡化運算。乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結果。

  1.5有理數的乘方

  1.5.1乘方

  求n個相同因數的的積的運算,叫做乘方,乘方的結果叫做冪。在an中,a叫做底數,n叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次冪。

  負數的奇次冪是負數,負數的偶次冪是正數。

  正數的任何次冪都是正數,0的任何正整數次冪都是0。

  有理數混合運算的運算順序:

  ⑴先乘方,再乘除,最后加減;

  ⑵同級運算,從左到右進行;

  ⑶如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行

  1.5.2科學記數法

  把一個大于10的數表示成a10n的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學記數法。

  用科學記數法表示一個n位整數,其中10的指數是n-1。

  1.5.3近似數和有效數字

  接近實際數目,但與實際數目還有差別的數叫做近似數。

  精確度:一個近似數四舍五入到哪一位,就說精確到哪一位。

  從一個數的左邊第一個非0 數字起,到末位數字止,所有數字都是這個數的有效數字。

  對于用科學記數法表示的數a10n,規定它的有效數字就是a中的有效數字。

有理數的知識點13

  有理數

  (1)凡能寫成形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

  (2)有理數的分類:①整數②分數

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

  (4)自然數:0和正整數。a>0,a是正數;a<0,a是負數;a≥0,a是正數或0,a是非負數;a≤0,a是負數或0,a是非正數。

  有理數比大小:

  (1)正數的絕對值越大,這個數越大;

  (2)正數永遠比0大,負數永遠比0小;

  (3)正數大于一切負數;

  (4)兩個負數比大小,絕對值大的反而小;

  (5)數軸上的`兩個數,右邊的數總比左邊的數大;

  (6)大數-小數>0,小數-大數<0.

  有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

  (2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數與0相加,仍得這個數。

  有理數加法的運算律:

  (1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。

  9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b)。

  有理數乘法法則:

  (1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數同零相乘都得零;

  (3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。

  有理數乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac。

  有理數除法法則:

  除以一個數等于乘以這個數的倒數;注意:零不能做除數,。

  有理數乘方的法則:

  (1)正數的任何次冪都是正數;

  (2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n。

有理數的知識點14

  2021年中考數學知識點:有理數

  一、正數和負數

  正數和負數的概念

  負數:比0小的數;正數:比0大的數。

  0既不是正數,也不是負數

  ☆注意:字母a可以表示任意數,當a表示正數時,-a是負數;當a表示負數時,-a是正數;當a表示0時,-a仍是0。強調:帶正號的數不一定是正數,帶負號的數不一定是負數。

  具有相反意義的量

  若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量。習慣把“前進、上升、收入、零上溫度”等規定為正,“后退、下降、支出、零下溫度”等規定為負.

  二、有理數

  有理數的概念

  (1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)

  (2)正分數和負分數統稱為分數

  (3)整數和分數統稱有理數

  ☆注意:①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。

  數軸

  (1)數軸的概念:規定了原點,正方向,單位長度的直線叫做數軸。

  注意:數軸是一條向兩端無限延伸的直線;

  原點、正方向、單位長度是數軸的三要素,三者缺一不可;

  數軸的三要素都是根據實際需要規定的,同一數軸上的單位長度要統一;

  (2)數軸上的點與有理數的關系

  所有的有理數都可以用數軸上唯一的點來表示,正有理數可用原點正方向的點表示,負有理數可用原點負方向的點表示,0用原點表示。

  相反數

  (1)只有符號不同的兩個數叫做互為相反數;0的相反數是0;任何一個有理數都有相反數

  (2)互為相反數的兩數的和為0,即:若a、b互為相反數,則a+b=0;互為相反數的兩個點在數軸上分別位于原點兩側,并且與原點的距離相等。

  (3)在一個數的前面加上負號“-”,就得到了這個數的相反數。a的相反數是-a。

  (4)多重符號的化簡

  多重符號的化簡規律:“+”號的個數不影響化簡的結果,可以直接省略;“-”號的個數決定最后化簡結果;即:“-”的個數是奇數時,結果為負,“-”的個數是偶數時,結果為正。

  絕對值

  (1)絕對值的幾何定義:數軸上表示數a的點與原點的距離,叫做a的絕對值,記作:|a|

  (2)求絕對值:正數的絕對值是它本身,0的絕對值是0,負數的絕對值是它的相反數;可用字母表示為:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可歸納為①:a≥0時,|a|=a(非負數的絕對值等于本身;絕對值等于本身的數是非負數。)②a≤0時,|a|=-a(非正數的絕對值等于其相反數;絕對值等于其相反數的數是非正數。)

  (3)若幾個數的絕對值的和等于0,則這幾個數就同時為0。即|a|+|b|=0,則a=0且b=0。(非負數的常用性質:若幾個非負數的和為0,則有且只有這幾個非負數同時為0)

  有理數比大小

  (1)利用數軸表示兩數大小

  在以向右為正方向的數軸上數的大小比較,右邊的數總比左邊的數大;

  正數都大于0,負數都小于0,正數大于負數;

  (2)數軸上特殊的最大(小)數

  最小的自然數是0,無最大的自然數;

  最小的正整數是1,無最大的正整數;

  最大的負整數是-1,無最小的'負整數

  (3)利用絕對值比較兩個負數的大小:兩個負數比較大小,絕對值大的反而小;

  (4)大數-小數>0,小數-大數<0。

  三、有理數的加、減法運算

  有理數加法

  (1)同號兩數相加,取相同符號,并且把絕對值相加

  (2)異號兩數相加,取絕對值大的數的符號,并且用較大的絕對值減去較小的絕對值

  (3)互為相反數的兩數相加得0

  ☆

  加法交換律:兩個有理數相加,交換加數的位置,和不變,a+b=b+a

  加法結合律:三個有理數相加,先把前兩個數相加,再把結果與第三個數相加;或者先把后兩個數相加,再把結果與第一個數相加,和不變,(a+b)+c=a+(b+c)

  ☆

  (1)同號結合相加(正數+正數、負數+負數)

  (2)互為相反數的兩數結合相加(把相加結果為零的數結合相加)

  (3)幾個分數相加,將同分母的先結合相加

  (4)將求和后為整數的數先結合相加

  (5)幾個帶分數相加,可將整數部分與分數部分分別結合相加

  ☆在一個求和的式子中,通常可以把“+”省略不寫,同時去掉加數的括號

  有理數的減法

  根據相反數的定義,減去一個數,等于加上這個數的相反數,有理數的減法可以轉化為加法進行計算。引入相反數的之后,有理數的加減混合運算可以統一為加法運算。

  四、有理數的乘、除法運算

  有理數乘法

  (1)異號兩數相乘得負數,并把絕對值相乘;同號兩數相乘得正數,并把絕對值相乘。

  (2)任何數與0相乘都得0

  ☆有理數的乘法運算定律

  乘法交換律:兩個有理數相乘,交換因數的位置,它們的積不變。a×b=b×a

  乘法結合律:三個數相乘,先把前兩個數相乘,再和另外一個數相乘,或先把后兩個數相乘,再和另外一個數相乘,積不變。a×b×c=a×(b×c)

  乘法分配律:兩個數的和(差)同一個數相乘,可以先把兩個加數(減數)分別同這個數相乘,再把兩個積相加(減),積不變。a×(b+c)=a×b+a×c

  倒數

  (1)乘積為1的兩個數互為倒數;注意:0沒有倒數;

  (2)若a,b互為倒數,則ab=1;

  (3)求倒數:求一個數的倒數就是用1去除以這個數。

  ①求假分數或真分數的倒數,只要把這個分數的分子、分母顛倒位置即可;

  ②求帶分數的倒數時,先把帶分數化為假分數,再把分子、分母顛倒位置;

  ③正數的倒數是正數,負數的倒數是負數。(求一個數的倒數,不改變這個數的性質);

  ④倒數等于它本身的數是1或-1;

  有理數除法

  (1)除以一個不等0的數,等于乘以這個數的倒數。

  (2)兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0

  有理數的加減乘除混合運算

  (1)乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結果。

  (2)有理數的加減乘除混合運算,如果有括號先計算括號里的,如果無括則按照‘先乘除,后加減’的順序進行,同級運算中,按前后順序從左到右依次運算,誰在前先算誰。

  五、有理數乘方

  乘方的概念:求n個相同因數的乘積的運算,叫做乘方,乘方的結果叫做冪。乘方中,相同的因式叫做底數,相同因式的個數叫做指數。

  記作:an,在an中,a叫做底數,n叫做指數,an叫做冪

  乘方的性質

  (1)負數的奇次冪是負數,負數的偶次冪的正數。

  (2)正數的任何次冪都是正數,0的任何正整數次冪都是0。

  (3)互為相反數的兩個數的奇數次冪仍互為相反數,偶數次冪相等。

  (4)任何一個數的偶數次冪都是非負數。

  有理數的混合運算

  做有理數的混合運算時,應注意以下運算順序:

  (1)先乘方,再乘除,最后加減;

  (2)同級運算中,按前后順序從左到右依次運算,誰在前先算誰。

  (3)如有括號,先做括號內的運算,按小括號,中括號,大括號依次進行。

  科學記數法

  把一個絕對值大于10的數記成a×10n的形式,其中a是整數數位只有一位的數(即1≤|a|<10,n是正整數),這種記數法叫科學記數法。

  方法:①a的確定:把原數的小數點向左移動,使它的整數位數為1,數的正負號保持不變;②n=原數的整數數位-1。

有理數的知識點15

  有理數:

  (1)凡能寫成形式的數,都是有理數,整數和分數統稱有理數.

  注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;

  (2)有理數的'分類:①②

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

  (4)自然數0和正整數;a>0a是正數;a<0a是負數;

  a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.

【有理數的知識點】相關文章:

有理數作文07-07

有理數反思02-29

七年級上冊有理數加法法則知識點梳理08-09

《有理數乘方》反思12-18

有理數反思[集合]02-29

《有理數乘方》反思12篇[實用]02-29

《有理數的乘法》數學課堂反思通用07-15

《有理數乘方》反思錦集(12篇)03-01

無理數和有理數的概念是什么02-27

《有理數的乘法》數學課堂反思(通用11篇)11-27

主站蜘蛛池模板: 欧美精品日日鲁夜夜添 | 日本一道本高清一区二区 | 99插插插| 19禁无遮挡啪啪无码网站性色 | 在线91网 | 国产成人a人亚洲精品无码 亚洲精品视频免费看 | 日本黄色播放器 | 色综合无码av网站 | 男人天堂手机在线 | 91在线日本 | 国内自拍激情视频 | 久草性视频| 人妻无码一区二区三区 | 欧美国产日韩在线三区 | 男人强撕开奶罩揉吮在线视频 | www.黄色免费观看 | 少妇无码太爽了不卡视频在线看 | 免费全部高h视频无码 | 成人aaa片一区国产精品 | 青青草视频黄 | 亚洲男女内射在线播放 | 图片区小说区视频区综合 | 日本国产乱弄免费视频 | 综合色播 | 亚洲国产精品va在线看黑人 | 日本不卡在线视频二区三区 | 久久这里只有精品9 | xxxwww黄色 | 国产无遮挡又黄又爽免费视频 | 国产精品99久久久久久似苏梦涵 | 一区二区欧美精品 | 国产亚洲精品久久久久久久久 | 国产尤物在线视精品在亚洲 | 久久久无码人妻精品一区 | 熟妇女人妻丰满少妇中文字幕 | 深夜国产一区二区三区在线看 | 国产美女高潮流白浆 | 国产69页 | 四虎4545www精品视频 | 亚洲妇女捆绑hd | 国产精品视频观看裸模 | 国产乱人无码伦av在线a | 国产毛片网 | 中文字幕欧美一区二区三区 | 国产在线一二 | 精品三级久久久久电影网 | 欧美婷婷六月丁香综合色 | 天天色综合影视 | 狠狠操狠狠干狠狠操 | 少妇精品视频 | 欧美在线一二三区 | 国产视频在线观看网站 | 免费的一级黄色片 | 亚洲精品欧美精品日韩精品 | 99在线观看精品视频 | 精品国内自产拍在线播放观看 | 日本高清中文字幕在线观线视频 | 极品色视频 | 国产亲子乱了中文 | 亚州日本乱码一区二区三区 | 在线成人av | 国产在线伊人 | 亚洲一级特黄 | 国产人妻黑人一区二区三区 | 一区二三区在线 | 中国 | 中文字幕乱码人在线视频1区 | 情侣黄网站免费看 | 操操操综合 | 日韩久久久久久中文人妻 | 亚洲国产经典 | 日韩日韩日韩日韩日韩 | 亚洲视频三区 | 性欧美视频 | 成年美女黄网站色奶头大全 | 日韩精品一区二区在线视频 | 国产91九色一区二区三区 | 1024手机视频在线观看 | 天堂√最新版中文在线地址 | 伊人青青久| 激情综合色五月丁香六月欧美 | 黑人黄色一级片 | 无码国产精品一区二区免费虚拟vr | 国产精品久久久久久久久免费 | 97丨九色丨蜜臀 | 九色综合狠狠综合久久 | 亚洲免费观看高清 | 久久精品视频网 | 东京热无码人妻系列综合网站 | 国产曰又深又爽免费视频 | 日本人妻巨大乳挤奶水 | 久草资源视频 | 福利视频网址 | 亚洲a∨国产av综合av麻豆丫 | 亚洲国产精品无码中文字 | 啪啪五月天 | 清纯唯美经典一区二区 | 婷婷av一区二区三区 | 大象av| 欧美饥渴熟妇高潮喷水水 |