- 高中數學復數知識點總結 推薦度:
- 相關推薦
復數知識點總結
總結就是把一個時間段取得的成績、存在的問題及得到的經驗和教訓進行一次全面系統的總結的書面材料,它可以幫助我們總結以往思想,發揚成績,因此十分有必須要寫一份總結哦。總結怎么寫才不會流于形式呢?以下是小編為大家收集的復數知識點總結,供大家參考借鑒,希望可以幫助到有需要的朋友。

四質量
(一)什么是質量
質量,就是表示表示物體有多重。
(二)常用單位
噸t千克kg克g
(三)常用換算
一噸=1000千克1千克=1000克
五時間
(一)什么是時間
是指有起點和終點的一段時間
(二)常用單位
世紀、年、月、日、時、分、秒
(三)單位換算
1世紀=100年
1年=365天平年
1天=24小時
1小時=60分
一分=60秒
六貨幣
(一)什么是貨幣
貨幣是充當一切商品的等價物的特殊商品。貨幣是價值的一般代表,可以購買任何別的商品。
(二)常用單位
元角分
(三)單位換算
1元=10角
1角=10分
第三章代數初步知識
一、用字母表示數
1用字母表示數的意義和作用
用字母表示數,可以把數量關系簡明的表達出來,同時也可以表示運算的結果。
2用字母表示常見的數量關系、運算定律和性質、幾何形體的計算公式
(1)常見的數量關系
路程用s表示,速度v用表示,時間用t表示,三者之間的關系:
s=vt
v=s/t
t=s/v
總價用a表示,單價用b表示,數量用c表示,三者之間的關系:
a=bc
b=a/c
c=a/b
(2)運算定律和性質
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
減法的性質:a-(b+c)=a-b-c
(3)用字母表示幾何形體的公式
長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。
c=2(a+b)
s=ab
正方形的邊長a用表示,周長用c表示,面積用s表示。
c=4a
s=a2
教師范讀的是閱讀教學中不可缺少的部分,我常采用范讀,讓幼兒學習、模仿。如領讀,我讀一句,讓幼兒讀一句,邊讀邊記;第二通讀,我大聲讀,我大聲讀,幼兒小聲讀,邊學邊仿;第三賞讀,我借用錄好配朗讀磁帶,一邊放錄音,一邊幼兒反復傾聽,在反復傾聽中體驗、品味。
平行四邊形的底a用表示,高用h表示,面積用s表示。
宋以后,京師所設小學館和武學堂中的教師稱謂皆稱之為“教諭”。至元明清之縣學一律循之不變。明朝入選翰林院的進士之師稱“教習”。到清末,學堂興起,各科教師仍沿用“教習”一稱。其實“教諭”在明清時還有學官一意,即主管縣一級的教育生員。而相應府和州掌管教育生員者則謂“教授”和“學正”。“教授”“學正”和“教諭”的副手一律稱“訓導”。于民間,特別是漢代以后,對于在“校”或“學”中傳授經學者也稱為“經師”。在一些特定的講學場合,比如書院、皇室,也稱教師為“院長、西 席、講席”等。
s=ah
三角形的底用a表示,高用h表示,面積用s表示。
觀察內容的選擇,我本著先靜后動,由近及遠的原則,有目的、有計劃的先安排與幼兒生活接近的,能理解的觀察內容。隨機觀察也是不可少的,是相當有趣的,如蜻蜓、蚯蚓、毛毛蟲等,孩子一邊觀察,一邊提問,興趣很濃。我提供的觀察對象,注意形象逼真,色彩鮮明,大小適中,引導幼兒多角度多層面地進行觀察,保證每個幼兒看得到,看得清。看得清才能說得正確。在觀察過程中指導。我注意幫助幼兒學習正確的觀察方法,即按順序觀察和抓住事物的不同特征重點觀察,觀察與說話相結合,在觀察中積累詞匯,理解詞匯,如一次我抓住時機,引導幼兒觀察雷雨,雷雨前天空急劇變化,烏云密布,我問幼兒烏云是什么樣子的,有的孩子說:烏云像大海的波浪。有的孩子說“烏云跑得飛快。”我加以肯定說“這是烏云滾滾。”當幼兒看到閃電時,我告訴他“這叫電光閃閃。”接著幼兒聽到雷聲驚叫起來,我抓住時機說:“這就是雷聲隆隆。”一會兒下起了大雨,我問:“雨下得怎樣?”幼兒說大極了,我就舀一盆水往下一倒,作比較觀察,讓幼兒掌握“傾盆大雨”這個詞。雨后,我又帶幼兒觀察晴朗的天空,朗誦自編的一首兒歌:“藍天高,白云飄,鳥兒飛,樹兒搖,太陽公公咪咪笑。”這樣抓住特征見景生情,幼兒不僅印象深刻,對雷雨前后氣象變化的詞語學得快,記得牢,而且會應用。我還在觀察的基礎上,引導幼兒聯想,讓他們與以往學的詞語、生活經驗聯系起來,在發展想象力中發展語言。如啄木鳥的嘴是長長的,尖尖的,硬硬的,像醫生用的手術刀―樣,給大樹開刀治病。通過聯想,幼兒能夠生動形象地描述觀察對象。s=ah/2
高中復數知識點總結
1.知識網絡圖
2.復數中的難點
(1)復數的向量表示法的運算.對于復數的向量表示有些學生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會復數向量運算的幾何意義,對其靈活地加以證明.
(2)復數三角形式的乘方和開方.有部分學生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應對此認真地加以訓練.
(3)復數的輻角主值的求法.
(4)利用復數的幾何意義靈活地解決問題.復數可以用向量表示,同時復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會.
3.復數中的重點
(1)理解好復數的概念,弄清實數、虛數、純虛數的不同點.
(2)熟練掌握復數三種表示法,以及它們間的互化,并能準確地求出復數的模和輻角.復數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求復數的模和輻角在解決具體問題時經常用到,是一個重點內容.
(3)復數的三種表示法的各種運算,在運算中重視共軛復數以及模的有關性質.復數的運算是復數中的主要內容,掌握復數各種形式的運算,特別是復數運算的幾何意義更是重點內容.
(4)復數集中一元二次方程和二項方程的解法.
【復數知識點總結】相關文章:
高中數學復數知識點總結04-16
this的復數10-15
初一英語知識點句子單數變復數10-11
waitress的復數10-16
human的復數06-17
womanteacher復數08-05
milk的復數09-10
employee的復數09-08
month的復數10-06
class復數09-14