高三物理知識點總結經典【15篇】
總結是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓和一些規律性認識的一種書面材料,它可以幫助我們有尋找學習和工作中的規律,因此好好準備一份總結吧。我們該怎么寫總結呢?下面是小編為大家收集的高三物理知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。

高三物理知識點總結1
1.磁場
(1)磁場:磁場是存在于磁體、電流和運動電荷周圍的一種物質。永磁體和電流都能在空間產生磁場。變化的電場也能產生磁場。
(2)磁場的基本特點:磁場對處于其中的磁體、電流和運動電荷有力的作用。
(3)磁現象的電本質:一切磁現象都可歸結為運動電荷(或電流)之間通過磁場而發生的相互作用。
(4)安培分子電流假說------在原子、分子等物質微粒內部,存在著一種環形電流即分子電流,分子電流使每個物質微粒成為微小的磁體。
(5)磁場的方向:規定在磁場中任一點小磁針N極受力的方向(或者小磁針靜止時N極的指向)就是那一點的磁場方向。
2.磁感線
(1)在磁場中人為地畫出一系列曲線,曲線的切線方向表示該位置的磁場方向,曲線的疏密能定性地表示磁場的弱強,這一系列曲線稱為磁感線。
(2)磁鐵外部的磁感線,都從磁鐵N極出來,進入S極,在內部,由S極到N極,磁感線是閉合曲線;磁感線不相交。
(3)幾種典型磁場的磁感線的分布:
①直線電流的磁場:同心圓、非勻強、距導線越遠處磁場越弱。
②通電螺線管的磁場:兩端分別是N極和S極,管內可看作勻強磁場,管外是非勻強磁場。
③環形電流的磁場:兩側是N極和S極,離圓環中心越遠,磁場越弱。
④勻強磁場:磁感應強度的大小處處相等、方向處處相同。勻強磁場中的磁感線是分布均勻、方向相同的平行直線。
3.磁感應強度
(1)定義:磁感應強度是表示磁場強弱的物理量,在磁場中垂直于磁場方向的通電導線,受到的磁場力F跟電流I和導線長度L的乘積IL的比值,叫做通電導線所在處的磁感應強度,定義式B=F/IL。單位T,1T=1N/(A·m)。
(2)磁感應強度是矢量,磁場中某點的磁感應強度的方向就是該點的磁場方向,即通過該點的磁感線的切線方向。
(3)磁場中某位置的磁感應強度的大小及方向是客觀存在的,與放入的電流強度I的大小、導線的長短L的大小無關,與電流受到的力也無關,即使不放入載流導體,它的磁感應強度也照樣存在,因此不能說B與F成正比,或B與IL成反比。
(4)磁感應強度B是矢量,遵守矢量分解合成的平行四邊形定則,注意磁感應強度的方向就是該處的磁場方向,并不是在該處的電流的受力方向。
4.地磁場:地球的磁場與條形磁體的磁場相似,其主要特點有三個:
(1)地磁場的N極在地球南極附近,S極在地球北極附近。
(2)地磁場B的水平分量(Bx)總是從地球南極指向北極,而豎直分量(By)則南北相反,在南半球垂直地面向上,在北半球垂直地面向下。
(3)在赤道平面上,距離地球表面相等的各點,磁感強度相等,且方向水平向北。
(1)安培力大小F=BIL。式中F、B、I要兩兩垂直,L是有效長度。若載流導體是彎曲導線,且導線所在平面與磁感強度方向垂直,則L指彎曲導線中始端指向末端的直線長度。
(2)安培力的方向由左手定則判定。
(3)安培力做功與路徑有關,繞閉合回路一周,安培力做的功可以為正,可以為負,也可以為零,而不像重力和電場力那樣做功總為零。
(1)洛倫茲力的大小f=qvB,條件:v⊥B。當v‖B時,f=0。
(2)洛倫茲力的特性:洛倫茲力始終垂直于v的方向,所以洛倫茲力一定不做功。
(3)洛倫茲力與安培力的.關系:洛倫茲力是安培力的微觀實質,安培力是洛倫茲力的宏觀表現。所以洛倫茲力的方向與安培力的方向一樣也由左手定則判定。
(4)在磁場中靜止的電荷不受洛倫茲力作用。
在帶電粒子只受洛倫茲力作用的條件下(電子、質子、α粒子等微觀粒子的重力通常忽略不計),
(1)若帶電粒子的速度方向與磁場方向平行(相同或相反),帶電粒子以入射速度v做勻速直線運動。
(2)若帶電粒子的速度方向與磁場方向垂直,帶電粒子在垂直于磁感線的平面內,以入射速率v做勻速圓周運動。①軌道半徑公式:r=mv/qB②周期公式:T=2πm/qB
8.帶電粒子在復合場中運動
(1)帶電粒子在復合場中做直線運動
①帶電粒子所受合外力為零時,做勻速直線運動,處理這類問題,應根據受力平衡列方程求解。
②帶電粒子所受合外力恒定,且與初速度在一條直線上,粒子將作勻變速直線運動,處理這類問題,根據洛倫茲力不做功的特點,選用牛頓第二定律、動量定理、動能定理、能量守恒等規律列方程求解。
(2)帶電粒子在復合場中做曲線運動
①當帶電粒子在所受的重力與電場力等值反向時,洛倫茲力提供向心力時,帶電粒子在垂直于磁場的平面內做勻速圓周運動。處理這類問題,往往同時應用牛頓第二定律、動能定理列方程求解。
②當帶電粒子所受的合外力是變力,與初速度方向不在同一直線上時,粒子做非勻變速曲線運動,這時粒子的運動軌跡既不是圓弧,也不是拋物線,一般處理這類問題,選用動能定理或能量守恒列方程求解。
③由于帶電粒子在復合場中受力情況復雜運動情況多變,往往出現臨界問題,這時應以題目中“”、“”“至少”等詞語為突破口,挖掘隱含條件,根據臨界條件列出輔助方程,再與其他方程聯立求解。
物理學是研究自然界中物理現象的科學。這些現象包括力現象,聲音現象,熱現象,電和磁現象,光現象,原子和原子核的運動變化等現象。學習物理的主要任務就要研究這些現象,找出其中的規律,了解產生這些現象的原因,并使同學們知道和掌握,以更好地為生產和生活服務。我們知道,我們周圍的世界就是由物質構成的,許多生產和生活現象都是物理現象,要學好物理,就要認真觀察周圍存在的各種物理現象。
高三物理知識點整合
1621年,荷蘭數學家斯涅耳找到了入射角與折射角之間的規律——折射定律。
1801年,英國物理學家托馬斯·楊成功地觀察到了光的干涉現象。
1818年,法國科學家菲涅爾和泊松計算并實驗觀察到光的圓板衍射—泊松亮斑。
1864年,英國物理學家麥克斯韋預言了電磁波的存在,指出光是一種電磁波;1887年,赫茲證實了電磁波的存在,光是一種電磁波
1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變。
3、受迫振動頻率特點:f=f驅動力4。發生共振條件:f驅動力=f固,A=max,共振的'防止和應用〔見第一冊P175〕
5、機械波、橫波、縱波〔見第二冊P2〕 6、波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}
7、聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)
8、波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大
9、波的干涉條件:兩列波頻率相同(相差恒定、振幅相近、振動方向相同)
10、多普勒效應:由于波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕}
高三物理知識點總結5
1、控制變量法
在實驗中或實際問題中,常有多個因素在變化,造成規律不易表現出來,這時可以先控制一些物理量不變,依次研究xx一個因素的影響和利用。如氣體的性質,壓強、體積和溫度通常是同時變化的,我們可以分別控制一個狀態參量不變,尋找另外兩個參量的關系,最后再進行統一。歐姆定律、牛頓第二定律等都是用這種方法研究的'。
2、等效替代法
xx些物理量不直觀或不易測量,可以用較直觀、較易測量而且又有等效效果的量代替,從而簡化問題。如在驗證動量守恒實驗中,發生碰撞的兩個小球的速度不易直接測量,可用水平位移代替水平速度研究;在描繪電場中的等勢線時,用電流場來模擬電場等都用了等效思想。
3、累積法
把xx些難以用常規儀器直接準確測量的物理量用累積的方法,將小量變大量,不僅可以便于測量,而且還可以提高測量的準確程度,減小誤差。如測量均勻細金屬絲直徑時,可以采用密繞多匝的方法;測量單擺的周期時,可測30—50個全振動的時間;分析打點計時器打出的紙帶時,可隔幾個點找出計數點分析等。
4、留跡法
有些物理過程是瞬息即逝的,我們需要將其記錄下來研究,如同攝像機一樣拍攝下來分析。如用沙擺描繪單擺的振動曲線;用打點計時器記錄物體位置;用頻閃照相機拍攝平拋的小球位置;用示波器觀察交流信號的波形等。
高三物理知識點總結6
第一、二節探究自由落體運動/自由落體運動規律
記錄自由落體運動軌跡
1.物體僅在中立的作用下,從靜止開始下落的運動,叫做自由落體運動(理想化模型)。在空氣中影響物體下落快慢的因素是下落過程中空氣阻力的影響,與物體重量無關。
2.伽利略的科學方法:觀察→提出假設→運用邏輯得出結論→通過實驗對推論進行檢驗→對假說進行修正和推廣
自由落體運動規律
1.自由落體運動是一種初速度為0的勻變速直線運動,加速度為常量,稱為重力加速度(g)。g=9.8m/s
2.重力加速度g的方向總是豎直向下的。其大小隨著緯度的增加而增加,隨著高度的增加而減少。
3.vt=2gs
豎直上拋運動
處理方法:分段法(上升過程a=-g,下降過程為自由落體),整體法(a=-g,注意矢量性)
1.速度公式:vt=v0—gt
位移公式:h=v0t—gt/2
2.上升到點時間t=v0/g,上升到點所用時間與回落到拋出點所用時間相等
3.上升的高度:s=v0/2g
第三節勻變速直線運動
勻變速直線運動規律
1.基本公式:s=v0t+at/2
2.平均速度:vt=v0+at
3.推論:
(1)v=vt/2
(2)S2—S1=S3—S2=S4—S3=……=△S=aT
(3)初速度為0的n個連續相等的時間內S之比:
S1:S2:S3:……:Sn=1:3:5:……:(2n—1)
(4)初速度為0的n個連續相等的位移內t之比:
t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)
(5)a=(Sm—Sn)/(m—n)T?(利用上各段位移,減少誤差→逐差法)
(6)vt?—v0=2as
第四節汽車行駛安全
1.停車距離=反應距離(車速×反應時間)+剎車距離(勻減速)
2.安全距離≥停車距離
3.剎車距離的大小取決于車的初速度和路面的粗糙程度
4.追及/相遇問題:抓住兩物體速度相等時滿足的臨界條件,時間及位移關系,臨界狀態(勻減速至靜止)。可用圖象法解題。
高三物理知識點總結梳理2
1.交變電流:大小和方向都隨時間作周期性變化的電流,叫做交變電流。按正弦規律變化的電動勢、電流稱為正弦交流電。
2.正弦交流電----(1)函數式:e=Emsinωt(其中★Em=NBSω)
(2)線圈平面與中性面重合時,磁通量,電動勢為零,磁通量的變化率為零,線圈平面與中心面垂直時,磁通量為零,電動勢,磁通量的變化率。
(3)若從線圈平面和磁場方向平行時開始計時,交變電流的變化規律為i=Imcosωt。
(4)圖像:正弦交流電的電動勢e、電流i、和電壓u,其變化規律可用函數圖像描述。
3.表征交變電流的物理量
(1)瞬時值:交流電某一時刻的值,常用e、u、i表示。
(2)值:Em=NBSω,值Em(Um,Im)與線圈的形狀,以及轉動軸處于線圈平面內哪個位置無關。在考慮電容器的耐壓值時,則應根據交流電的值。
(3)有效值:交流電的有效值是根據電流的熱效應來規定的。即在同一時間內,跟某一交流電能使同一電阻產生相等熱量的直流電的數值,叫做該交流電的有效值。
①求電功、電功率以及確定保險絲的熔斷電流等物理量時,要用有效值計算,有效值與值之間的關系
E=Em/,U=Um/,I=Im/只適用于正弦交流電,其他交變電流的有效值只能根據有效值的定義來計算,切不可亂套公式。②在正弦交流電中,各種交流電器設備上標示值及交流電表上的測量值都指有效值。
(4)周期和頻率----周期T:交流電完成一次周期性變化所需的時間。在一個周期內,交流電的方向變化兩次。
頻率f:交流電在1s內完成周期性變化的次數。角頻率:ω=2π/T=2πf。
4.電感、電容對交變電流的影響
(1)電感:通直流、阻交流;通低頻、阻高頻。(2)電容:通交流、隔直流;通高頻、阻低頻。
5.變壓器:
(1)理想變壓器:工作時無功率損失(即無銅損、鐵損),因此,理想變壓器原副線圈電阻均不計。
(2)★理想變壓器的關系式:
①電壓關系:U1/U2=n1/n2(變壓比),即電壓與匝數成正比。
②功率關系:P入=P出,即I1U1=I2U2+I3U3+…
③電流關系:I1/I2=n2/n1(變流比),即對只有一個副線圈的變壓器電流跟匝數成反比。
(3)變壓器的高壓線圈匝數多而通過的電流小,可用較細的導線繞制,低壓線圈匝數少而通過的電流大,應當用較粗的導線繞制。
6.電能的輸送
(1)關鍵:減少輸電線上電能的損失:P耗=I2R線
(2)方法:
①減小輸電導線的電阻,如采用電阻率小的材料;加大導線的橫截面積。
②提高輸電電壓,減小輸電電流。前一方法的作用十分有限,代價較高,一般采用后一種方法。
(3)遠距離輸電過程:輸電導線損耗的電功率:P損=(P/U)2R線,因此,當輸送的電能一定時,輸電電壓增大到原來的n倍,輸電導線上損耗的功率就減少到原來的1/n2。
(4)解有關遠距離輸電問題時,公式P損=U線I線或P損=U線2R線不常用,其原因是在一般情況下,U線不易求出,且易把U線和U總相混淆而造成錯誤。
高三物理知識點總結梳理3
1.力
力是物體對物體的作用,是物體發生形變和改變物體的運動狀態(即產生加速度)的原因。力是矢量。
2.重力
(1)重力是由于地球對物體的吸引而產生的。
[注意]重力是由于地球的吸引而產生,但不能說重力就是地球的吸引力,重力是萬有引力的一個分力。
但在地球表面附近,可以認為重力近似等于萬有引力
(2)重力的大小:地球表面G=mg,離地面高h處G/=mg/,其中g/=[R/(R+h)]2g
(3)重力的方向:豎直向下(不一定指向地心)。
(4)重心:物體的各部分所受重力合力的作用點,物體的重心不一定在物體上。
3.彈力
(1)產生原因:由于發生彈性形變的物體有恢復形變的趨勢而產生的。
(2)產生條件:
①直接接觸;
②有彈性形變。
(3)彈力的方向:與物體形變的方向相反,彈力的受力物體是引起形變的物體,施力物體是發生形變的物體。在點面接觸的情況下,垂直于面;
在兩個曲面接觸(相當于點接觸)的情況下,垂直于過接觸點的公切面。
①繩的拉力方向總是沿著繩且指向繩收縮的方向,且一根輕繩上的張力大小處處相等。
②輕桿既可產生壓力,又可產生拉力,且方向不一定沿桿。
(4)彈力的大小:一般情況下應根據物體的運動狀態,利用平衡條件或牛頓定律來求解。彈簧彈力可由胡克定律來求解。
★胡克定律:在彈性限度內,彈簧彈力的大小和彈簧的形變量成正比,即F=kx。k為彈簧的勁度系數,它只與彈簧本身因素有關,單位是N/m。
4.摩擦力
(1)產生的條件:
1、相互接觸的物體間存在壓力;
2、接觸面不光滑;
3、接觸的物體之間有相對運動(滑動摩擦力)或相對運動的趨勢(靜摩擦力),這三點缺一不可。
(2)摩擦力的'方向:沿接觸面切線方向,與物體相對運動或相對運動趨勢的方向相反,與物體運動的方向可以相同也可以相反。
(3)判斷靜摩擦力方向的方法:
1、假設法:首先假設兩物體接觸面光滑,這時若兩物體不發生相對運動,則說明它們原來沒有相對運動趨勢,也沒有靜摩擦力;若兩物體發生相對運動,則說明它們原來有相對運動趨勢,并且原來相對運動趨勢的方向跟假設接觸面光滑時相對運動的方向相同。然后根據靜摩擦力的方向跟物體相對運動趨勢的方向相反確定靜摩擦力方向。
2、平衡法:根據二力平衡條件可以判斷靜摩擦力的方向。
(4)大小:先判明是何種摩擦力,然后再根據各自的規律去分析求解。
1、滑動摩擦力大小:利用公式f=μFN進行計算,其中FN是物體的正壓力,不一定等于物體的重力,甚至可能和重力無關。或者根據物體的運動狀態,利用平衡條件或牛頓定律來求解。
2、靜摩擦力大小:靜摩擦力大小可在0與fmax之間變化,一般應根據物體的運動狀態由平衡條件或牛頓定律來求解。
5.物體的受力分析
1、確定所研究的物體,分析周圍物體對它產生的作用,不要分析該物體施于其他物體上的力,也不要把作用在其他物體上的力錯誤地認為通過“力的傳遞”作用在研究對象上。
2、按“性質力”的順序分析。即按重力、彈力、摩擦力、其他力順序分析,不要把“效果力”與“性質力”混淆重復分析。
3、如果有一個力的方向難以確定,可用假設法分析。先假設此力不存在,想像所研究的物體會發生怎樣的運動,然后審查這個力應在什么方向,對象才能滿足給定的運動狀態。
6.力的合成與分解
1、合力與分力:如果一個力作用在物體上,它產生的效果跟幾個力共同作用產生的效果相同,這個力就叫做那幾個力的合力,而那幾個力就叫做這個力的分力。
2、力合成與分解的根本方法:平行四邊形定則。
3、力的合成:求幾個已知力的合力,叫做力的合成。
共點的兩個力(F1和F2)合力大小F的取值范圍為:|F1-F2|≤F≤F1+F2。
4、力的分解:求一個已知力的分力,叫做力的分解(力的分解與力的合成互為逆運算)。
在實際問題中,通常將已知力按力產生的實際作用效果分解;為方便某些問題的研究,在很多問題中都采用正交分解法。
7.共點力的平衡
1、共點力:作用在物體的同一點,或作用線相交于一點的幾個力。
2、平衡狀態:物體保持勻速直線運動或靜止叫平衡狀態,是加速度等于零的狀態。
3、★共點力作用下的物體的平衡條件:物體所受的合外力為零,即∑F=0,若采用正交分解法求解平衡問題,則平衡條件應為:∑Fx=0,∑Fy=0。
4、解決平衡問題的常用方法:隔離法、整體法、圖解法、三角形相似法、正交分解法等等。
高三物理知識點總結7
物理高三重要知識點
牛頓第二定律的定義
物體的加速度跟物體所受的合外力F成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。
牛頓第二定律的公式
∑F=ma,∑F表示物體受到的合外力,m表示物體的質量,a表示物體的加速度。根據牛頓第二定律,規定國際單位制中力的單位“牛頓”(簡稱“牛”,符號是N)為:使質量是1kg的物體產生1m/s2的加速度的力為1N,即1N=1kg·m/s2。
牛頓第二定律的六個性質
(1)因果性:力是產生加速度的原因。若不存在力,則沒有加速度。
(2)矢量性:力和加速度都是矢量,物體加速度方向由物體所受合外力的方向決定。牛頓第二定律數學表達式∑F=ma中,等號不僅表示左右兩邊數值相等,也表示方向一致,即物體加速度方向與所受合外力方向相同。根據他的矢量性可以用正交分解法講力合成或分解。
(3)瞬時性:當物體(質量一定)所受外力發生突然變化時,作為由力決定的加速度的大小或方向也要同時發生突變;當合外力為零時,加速度同時為零,加速度與合外力保持一一對應關系。牛頓第二定律是一個瞬時對應的規律,表明了力的瞬間效應。
(4)相對性:自然界中存在著一種坐標系,在這種坐標系中,當物體不受力時將保持勻速直線運動或靜止狀態,這樣的坐標系叫慣性參照系。地面和相對于地面靜止或作勻速直線運動的物體可以看作是慣性參照系,牛頓定律只在慣性參照系中才成立。
(5)獨立性:物體所受各力產生的加速度,互不干擾,而物體的實際加速度則是每一個力產生加速度的矢量和,分力和分加速度在各個方向上的分量關系,也遵循牛頓第二定律。
(6)同一性:a與F與同一物體某一狀態相對應。
物理高三基礎知識點
1.電路的組成:電源、開關、用電器、導線。
2.電路的三種狀態:通路、斷路、短路。
3.電流有分支的是并聯,電流只有一條通路的是串聯。
4.在家庭電路中,用電器都是并聯的。
5.電荷的定向移動形成電流(金屬導體里自由電子定向移動的方向與電流方向相反)。
6.電流表不能直接與電源相連,電壓表在不超出其測量范圍的情況下可以。
7.電壓是形成電流的.原因。
8.安全電壓應低于24V。
9.金屬導體的電阻隨溫度的升高而增大。
10.影響電阻大小的因素有:材料、長度、橫截面積、溫度(溫度有時不考慮)。
11.滑動變阻器和電阻箱都是靠改變接入電路中電阻絲的長度來改變電阻的。
12.利用歐姆定律公式要注意I、U、R三個量是對同一段導體而言的。
13.伏安法測電阻原理:R=伏安法測電功率原理:P=UI
14.串聯電路中:電壓、電功和電功率與電阻成正比
15.并聯電路中:電流、電功和電功率與電阻成反比
16."220V100W"的燈泡比"220V40W"的燈泡電阻小,燈絲粗。
物理高三知識點
一、運動的描述
1.物體模型用質點,忽略形狀和大小;地球公轉當質點,地球自轉要大小。物體位置的變化,準確描述用位移,運動快慢S比t,a用Δv與t比。
2.運用一般公式法,平均速度是簡法,中間時刻速度法,初速度零比例法,再加幾何圖像法,求解運動好方法。自由落體是實例,初速為零a等g.豎直上拋知初速,上升心有數,飛行時間上下回,整個過程勻減速。中心時刻的速度,平均速度相等數;求加速度有好方,ΔS等aT平方。
3.速度決定物體動,速度加速度方向中,同向加速反向減,垂直拐彎莫前沖。
二、力
1.解力學題堡壘堅,受力分析是關鍵;分析受力性質力,根據效果來處理。
2.分析受力要仔細,定量計算七種力;重力有無看提示,根據狀態定彈力;先有彈力后摩擦,相對運動是依據;萬有引力在萬物,電場力存在定無疑;洛侖茲力安培力,二者實質是統一;相互垂直力,平行無力要切記。
3.同一直線定方向,計算結果只是“量”,某量方向若未定,計算結果給指明;兩力合力小和大,兩個力成q角夾,平行四邊形定法;合力大小隨q變,只在最小間,多力合力合另邊。多力問題狀態揭,正交分解來解決,三角函數能化解。
4.力學問題方法多,整體隔離和假設;整體只需看外力,求解內力隔離做;狀態相同用整體,否則隔離用得多;即使狀態不相同,整體牛二也可做;假設某力有或無,根據計算來定奪;極限法抓臨界態,程序法按順序做;正交分解選坐標,軸上矢量盡量多。
三、牛頓運動定律
1.F等ma,牛頓二定律,產生加速度,原因就是力。合力與a同方向,速度變量定a向,a變小則u可大,只要a與u同向。
2.N、T等力是視重,mg乘積是實重;超重失重視視重,其中不變是實重;加速上升是超重,減速下降也超重;失重由加降減升定,完全失重視重零
四、曲線運動、萬有引力
1.運動軌跡為曲線,向心力存在是條件,曲線運動速度變,方向就是該點切線。
2.圓周運動向心力,供需關系在心里,徑向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心離。
3.萬有引力因質量生,存在于世界萬物中,皆因天體質量大,萬有引力顯神通。衛星繞著天體行,快慢運動的衛星,均由距離來決定,距離越近它越快,距離越遠越慢行,同步衛星速度定,定點赤道上空行。
物理高三知識點歸納
磁感應強度
(1)定義:磁感應強度是表示磁場強弱的物理量,在磁場中垂直于磁場方向的通電導線,受到的磁場力F跟電流I和導線長度L的乘積IL的比值,叫做通電導線所在處的磁感應強度,定義式B=F/IL。單位T,1T=1N/(A·m)。
(2)磁感應強度是矢量,磁場中某點的磁感應強度的方向就是該點的磁場方向,即通過該點的磁感線的切線方向。
(3)磁場中某位置的磁感應強度的大小及方向是客觀存在的,與放入的電流強度I的大小、導線的長短L的大小無關,與電流受到的力也無關,即使不放入載流導體,它的磁感應強度也照樣存在,因此不能說B與F成正比,或B與IL成反比。
(4)磁感應強度B是矢量,遵守矢量分解合成的平行四邊形定則,注意磁感應強度的方向就是該處的磁場方向,并不是在該處的電流的受力方向。
物理高三知識點總結
1.水的密度:ρ水=1.0×103kg/m3=1g/cm3
2.1m3水的質量是1t,1cm3水的質量是1g。
3.利用天平測量質量時應"左物右碼"。
4.同種物質的密度還和狀態有關(水和冰同種物質,狀態不同,密度不同)。
5.增大壓強的方法:
①增大壓力
②減小受力面積
6.液體的密度越大,深度越深液體內部壓強越大。
7.連通器兩側液面相平的條件:
①同一液體
②液體靜止
8.利用連通器原理:(船閘、茶壺、__管、水位計、自動飲水器、過水涵洞等)。
9.大氣壓現象:(用吸管吸汽水、覆杯試驗、鋼筆吸水、抽水機等)。
10.馬德保半球試驗證明了大氣壓強的存在,托里拆利試驗證明了大氣壓強的值。
11.浮力產生的原因:液體對物體向上和向下壓力的合力。
12.物體在液體中的三種狀態:漂浮、懸浮、沉底。
13.物體在漂浮和懸浮狀態下:浮力=重力
14.物體在懸浮和沉底狀態下:V排=V物
15.阿基米德原理F浮=G排也適用于氣體(浮力的計算公式:F浮=ρ氣gV排也適用于氣體)
高三物理知識點總結8
1、麥克斯韋的電磁場理論
(1)變化的磁場能夠在周圍空間產生電場,變化的電場能夠在周圍空間產生磁場。
(2)隨時間均勻變化的磁場產生穩定電場。隨時間不均勻變化的磁場產生變化的電場。隨時間均勻變化的電場產生穩定磁場,隨時間不均勻變化的電場產生變化的磁場。
(3)變化的電場和變化的磁場總是相互關系著,形成一個不可分割的統一體,這就是電磁場。
2、電磁波
(1)周期性變化的電場和磁場總是互相轉化,互相激勵,交替產生,由發生區域向周圍空間傳播,形成電磁波。
(2)電磁波是橫波
(3)電磁波可以在真空中傳播,電磁波從一種介質進入另一介質,頻率不變、波速和波長均發生變化,電磁波傳播速度v等于波長λ和頻率f的乘積,即v=λf,任何頻率的電磁波在真空中的傳播速度都等于真空中的光速c=3.00×108m/s。
高三物理知識點3摩擦力
(1)產生的條件:
1、相互接觸的物體間存在壓力;2、接觸面不光滑;
3、接觸的物體之間有相對運動(滑動摩擦力)或相對運動的趨勢(靜摩擦力),這三點缺一不可。
(2)摩擦力的方向:沿接觸面切線方向,與物體相對運動或相對運動趨勢的方向相反,與物體運動的方向可以相同也可以相反。
(3)判斷靜摩擦力方向的方法:
1、假設法:首先假設兩物體接觸面光滑,這時若兩物體不發生相對運動,則說明它們原來沒有相對運動趨勢,也沒有靜摩擦力;若兩物體發生相對運動,則說明它們原來有相對運動趨勢,并且原來相對運動趨勢的方向跟假設接觸面光滑時相對運動的方向相同。然后根據靜摩擦力的方向跟物體相對運動趨勢的方向相反確定靜摩擦力方向。
2、平衡法:根據二力平衡條件可以判斷靜摩擦力的方向。
(4)大小:先判明是何種摩擦力,然后再根據各自的規律去分析求解。
1、滑動摩擦力大小:利用公式f=μFN進行計算,其中FN是物體的正壓力,不一定等于物體的重力,甚至可能和重力無關。或者根據物體的運動狀態,利用平衡條件或牛頓定律來求解。
2、靜摩擦力大小:靜摩擦力大小可在0與fmax之間變化,一般應根據物體的運動狀態由平衡條件或牛頓定律來求解。
高三物理知識點4力學知識點
1、力:
力是物體之間的相互作用,有力必有施力物體和受力物體。力的大小、方向、作用點叫力的三要素。用一條有向線段把力的三要素表示出來的方法叫力的圖示。
按照力命名的依據不同,可以把力分為按性質命名的力(例如:重力、彈力、摩擦力、分子力、電磁力等。)按效果命名的力(例如:拉力、壓力、支持力、動力、阻力等)。
力的作用效果:形變;改變運動狀態。
2、重力:
由于地球的吸引而使物體受到的力。重力的大小G=mg,方向豎直向下。作用點叫物體的重心;重心的位置與物體的質量分布和形狀有關。質量均勻分布,形狀規則的物體的重心在其幾何中心處。薄板類物體的重心可用懸掛法確定
3、彈力:
(1)內容:發生形變的物體,由于要恢復原狀,會對跟它接觸的且使其發生形變的物體產生力的作用,這種力叫彈力。
(2)條件:接觸;形變。但物體的形變不能超過彈性限度。
(3)彈力的'方向和產生彈力的那個形變方向相反。(平面接觸面間產生的彈力,其方向垂直于接觸面;曲面接觸面間產生的彈力,其方向垂直于過研究點的曲面的切面;點面接觸處產生的彈力,其方向垂直于面、繩子產生的彈力的方向沿繩子所在的直線。)
(4)大小:彈簧的彈力大小由F=kx計算,一般情況彈力的大小與物體同時所受的其他力及物體的運動狀態有關,應結合平衡條件或牛頓定律確定。
4、摩擦力:
(1)摩擦力產生的條件:接觸面粗糙、有彈力作用、有相對運動(或相對運動趨勢),三者缺一不可。
(2)摩擦力的方向:跟接觸面相切,與相對運動或相對運動趨勢方向相反。但注意摩擦力的方向和物體運動方向可能相同,也可能相反,還可能成任意角度。
高中物理知識點總結:力學部分力學的基本規律之:勻變速直線運動的基本規律(12個方程);三力共點平衡的特點;牛頓運動定律(牛頓第一、第二、第三定律);力學的基本規律之:萬有引力定律;天體運動的基本規律(行星、人造地球衛星、萬有引力完全充當向心力、近地極地同步三顆特殊衛星、變軌問題);力學的基本規律之:動量定理與動能定理(力與物體速度變化的關系—沖量與動量變化的關系—功與能量變化的關系);動量守恒定律(四類守恒條件、方程、應用過程);功能基本關系(功是能量轉化的量度)力學的基本規律之:重力做功與重力勢能變化的關系(重力、分子力、電場力、引力做功的特點);
功能原理(非重力做功與物體機械能變化之間的關系);力學的基本規律之:機械能守恒定律(守恒條件、方程、應用步驟);簡諧運動的基本規律(兩個理想化模型一次全振動四個過程五個物理量、簡諧運動的對稱性、單擺的振動周期公式);簡諧運動的圖像應用;簡諧波的傳播特點;波長、波速、周期的關系;簡諧波的圖像應用。
1、電路的組成:電源、開關、用電器、導線。
2、電路的三種狀態:通路、斷路、短路。
3、電流有分支的是并聯,電流只有一條通路的是串聯。
4、在家庭電路中,用電器都是并聯的。
5、電荷的定向移動形成電流(金屬導體里自由電子定向移動的方向與電流方向相反)。
6、電流表不能直接與電源相連,電壓表在不超出其測量范圍的情況下可以。
7、電壓是形成電流的原因。
8、安全電壓應低于24V。
9、金屬導體的電阻隨溫度的升高而增大。
10、影響電阻大小的因素有:材料、長度、橫截面積、溫度(溫度有時不考慮)。
11、滑動變阻器和電阻箱都是靠改變接入電路中電阻絲的長度來改變電阻的。
12、利用歐姆定律公式要注意I、U、R三個量是對同一段導體而言的。
13、伏安法測電阻原理:R=伏安法測電功率原理:P=UI
14、串聯電路中:電壓、電功和電功率與電阻成正比
15、并聯電路中:電流、電功和電功率與電阻成反比16。"220V、100W"的燈泡比"220V、40W"的燈泡電阻小,燈絲粗。
高三物理知識點總結9
調整生物鐘。考前一周,每天要保證8小時的睡眠,晚上不要熬夜,因為白天如果精神不集中,容易使記憶效率降低。
考試前應從物理知識和答題技巧兩方面做好充分的準備。考前幾天不要再做難題、新題,試題的難度不高,更側重于基礎;考前多看基礎題和錯題本;在最后復習階段,千萬不能相信所謂的某某資料、秘籍等等,通過押題猜題來復習。
答題時注意事項。做物理題順序和時間分配,一般按試卷的順序從頭答起,對于理綜試卷來說,應該先用一個小時零二十分鐘左右的時間做完第一遍試卷。做完的題一般分三種情況:一是很有把握,覺得自己能全做對;二是自己雖然做出來了但是沒有把握;三是自己暫時還不會做的題目。然后再用五十分鐘左右的時間對于自己沒有把握的題目進行重點的攻克。最后一遍利用二十分鐘左右的`時間再重點攻克那些自己可能做得出來的題目,而對于第二遍仍然感到做不出來的題目就可以放棄了。
高三物理知識點總結10
1、簡諧振動F=—kx{F:回復力,k:比例系數,x:位移,負號表示F的方向與x始終反向}。
2、單擺周期T=2π(l/g)1/2{l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}。
3、受迫振動頻率特點:f=f驅動力4。發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕。
5、機械波、橫波、縱波〔見第二冊P2〕
6、波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}。
7、聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)。
8、波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大。
9、波的`干涉條件:兩列波頻率相同(相差恒定、振幅相近、振動方向相同)。
10、多普勒效應:由于波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小。
高三物理知識點總結11
1、磁感應強度
(1)定義:磁感應強度是表示磁場強弱的物理量,在磁場中垂直于磁場方向的通電導線,受到的磁場力F跟電流I和導線長度L的乘積IL的比值,叫做通電導線所在處的.磁感應強度,定義式B=F/IL。單位T,1T=1N/(A·m)。
(2)磁感應強度是矢量,磁場中xx點的磁感應強度的方向就是該點的磁場方向,即通過該點的磁感線的切線方向。
(3)磁場中xx位置的磁感應強度的大小及方向是客觀存在的,與放入的電流強度I的大小、導線的長短L的大小無關,與電流受到的力也無關,即使不放入載流導體,它的磁感應強度也照樣存在,因此不能說B與F成正比,或B與IL成反比。
(4)磁感應強度B是矢量,遵守矢量分解合成的平行四邊形定則,注意磁感應強度的方向就是該處的磁場方向,并不是在該處的電流的受力方向。
高三物理知識點總結12
一、質點的運動
(1)直線運動
1)勻變速直線運動
1、速度Vt=Vo+at
2、位移s=Vot+at/2=V平t= Vt/2t
3、有用推論Vt—Vo=2as
4、平均速度V平=s/t(定義式)
5、中間時刻速度Vt/2=V平=(Vt+Vo)/2
6、中間位置速度Vs/2=√[(Vo+Vt)/2]
7、加速度a=(Vt—Vo)/t{以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}
8、實驗用推論Δs=aT{Δs為連續相鄰相等時間(T)內位移之差}
9、主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。
注:(1)平均速度是矢量;
(2)物體速度大,加速度不一定大;
(3)a=(Vt—Vo)/t只是量度式,不是決定式;
(4)其它相關內容:質點。位移和路程。參考系。時間與時刻;速度與速率。瞬時速度。
2)自由落體運動
初速度Vo=0 2。末速度Vt=gt 3。下落高度h=gt2/2(從Vo位置向下計算)4。推論Vt2=2gh
注:(1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規律;
(2)a=g=9。8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。
3)豎直上拋運動
1、位移s=Vot—gt2/2
2、末速度Vt=Vo—gt(g=9。8m/s2≈10m/s2)
3、有用推論Vt2—Vo2=—2gs
4、上升最大高度Hm=Vo2/2g(拋出點算起)
5、往返時間t=2Vo/g(從拋出落回原位置的時間)
注:(1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;
(2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;
(3)上升與下落過程具有對稱性,如在同點速度等值反向等。
二、力(常見的力、力的合成與分解)
1)常見的力
1、重力G=mg(方向豎直向下,g=9。8m/s2≈10m/s2,作用點在重心,適用于地球表面附近)
2、胡克定律F=kx{方向沿恢復形變方向,k:勁度系數(N/m),x:形變量(m)}
3、滑動摩擦力F=μFN{與物體相對運動方向相反,μ:摩擦因數,FN:正壓力(N)}
4、靜摩擦力0≤f靜≤fm(與物體相對運動趨勢方向相反,fm為最大靜摩擦力)
5、萬有引力F=Gm1m2/r2(G=6。67×10—11N?m2/kg2,方向在它們的連線上)
6、靜電力F=kQ1Q2/r2(k=9。0×109N?m2/C2,方向在它們的連線上)
7、電場力F=Eq(E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)
8、安培力F=BILsinθ(θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)
9、洛侖茲力f=qVBsinθ(θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)
注:(1)勁度系數k由彈簧自身決定;
(2)摩擦因數μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;
(3)fm略大于μFN,一般視為fm≈μFN;
(4)其它相關內容:靜摩擦力(大小、方向);
(5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);
(6)安培力與洛侖茲力方向均用左手定則判定。
2)力的合成與分解
1、同一直線上力的合成同向:F=F1+F2,反向:F=F1—F2(F1>F2)
2、互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2時:F=(F12+F22)1/2
3、合力大小范圍:|F1—F2|≤F≤|F1+F2|
4、力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)
注:(1)力(矢量)的合成與分解遵循平行四邊形定則;
(2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;
(4)F1與F2的值一定時,F1與F2的夾角(α角)越大,合力越小;
(5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數運算。
3)動力學(運動和力)
1、牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止
2、牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}
3、牛頓第三運動定律:F=—F′{負號表示方向相反,F、F′各自作用在對方,平衡力與作用力反作用力區別,實際應用:反沖運動}
4、共點力的平衡F合=0,推廣{正交分解法、三力匯交原理}
5、超重:FN>G,失重:FN 6、牛頓運動定律的適用條件:適用于解決低速運動問題,適用于宏觀物體,不適用于處理高速問題,不適用于微觀粒子 注:平衡狀態是指物體處于靜止或勻速直線狀態,或者是勻速轉動。 三、曲線運動、萬有引力 1)平拋運動 1、水平方向速度:Vx=Vo 2、豎直方向速度:Vy=gt 3、水平方向位移:x=Vot 4、豎直方向位移:y=gt2/2 5、運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2) 6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0 7、合位移:s=(x2+y2)1/2,位移方向與水平夾角α:tgα=y/x=gt/2Vo 8、水平方向加速度:ax=0;豎直方向加速度:ay=g 注:(1)平拋運動是勻變速曲線運動,加速度為g,通常可看作是水平方向的勻速直線運與豎直方向的自由落體運動的合成; (2)運動時間由下落高度h(y)決定與水平拋出速度無關; (3)θ與β的關系為tgβ=2tgα; (4)在平拋運動中時間t是解題關鍵; (5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。 2)勻速圓周運動 1、線速度V=s/t=2πr/T 2、角速度ω=Φ/t=2π/T=2πf 3、向心加速度a=V2/r=ω2r=(2π/T)2r 4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5、周期與頻率:T=1/f 6、角速度與線速度的關系:V=ωr 7、角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同) 8、主要物理量及單位:弧長(s):(m);角度(Φ):弧度(rad);頻率(f);赫(Hz);周期(T):秒(s);轉速(n);r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注:(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心; (2)做勻速圓周運動的物體,其向心力等于合力,并且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。 3)萬有引力 1、開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決于中心天體的質量)} 2、萬有引力定律:F=Gm1m2/r2(G=6。67×10—11N?m2/kg2,方向在它們的連線上) 3、天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天體半徑(m),M:天體質量(kg)} 4、衛星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量} 5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7。9km/s;V2=11。2km/s;V3=16。7km/s 6、地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑} 注:(1)天體運動所需的向心力由萬有引力提供,F向=F萬; (2)應用萬有引力定律可估算天體的質量密度等; (3)地球同步衛星只能運行于赤道上空,運行周期和地球自轉周期相同; (4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變小(一同三反); (5)地球衛星的最大環繞速度和最小發射速度均為7。9km/s。 四、功和能(功是能量轉化的量度) 1、功:W=Fscosα(定義式){W:功(J),F:恒力(N),s:位移(m),α:F、s間的夾角} 2、重力做功:Wab=mghab {m:物體的質量,g=9。8m/s2≈10m/s2,hab:a與b高度差(hab=ha—hb)} 3、電場力做功:Wab=qUab{q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa-φb} 4、電功:W=UIt(普適式){U:電壓(V),I:電流(A),t:通電時間(s)} 5、功率:P=W/t(定義式){P:功率[瓦(W)],W:t時間內所做的功(J),t:做功所用時間(s)} 6、汽車牽引力的功率:P=Fv;P平=Fv平{P:瞬時功率,P平:平均功率} 7、汽車以恒定功率啟動、以恒定加速度啟動、汽車最大行駛速度(vmax=P額/f) 8、電功率:P=UI(普適式){U:電路電壓(V),I:電路電流(A)} 9、焦耳定律:Q=I2Rt{Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)} 10、純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt 11、動能:Ek=mv2/2{Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)} 12、重力勢能:EP=mgh{EP:重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)} 13、電勢能:EA=qφA{EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)} 14、動能定理(對物體做正功,物體的動能增加):W合=mvt2/2—mvo2/2或W合=ΔEK {W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2—mvo2/2)} 15、機械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2 16、重力做功與重力勢能的變化(重力做功等于物體重力勢能增量的負值)WG=—ΔEP 注: (1)功率大小表示做功快慢,做功多少表示能量轉化多少; (2)O0≤α<90O做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功); (3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少 (4)重力做功和電場力做功均與路徑無關(見2、3兩式); (5)機械能守恒成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化; (6)能的其它單位換算:1kWh(度)=3。6×106J,1eV=1。60×10—19J; (7)彈簧彈性勢能E=kx2/2,與勁度系數和形變量有關。 五、電場 1、兩種電荷、電荷守恒定律、元電荷:(e=1。60×10—19C);帶電體電荷量等于元電荷的整數倍 2、庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9。0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引} 3、電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)} 4、真空點(源)電荷形成的電場E=kQ/r2{r:源電荷到該位置的距離(m),Q:源電荷的電量} 5、勻強電場的場強E=UAB/d{UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)} 6、電場力:F=qE{F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)} 7、電勢與電勢差:UAB=φA—φB,UAB=WAB/q=—ΔEAB/q 8、電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)} 9、電勢能:EA=qφA{EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)} 10、電勢能的變化ΔEAB=EB—EA{帶電體在電場中從A位置到B位置時電勢能的差值} 11、電場力做功與電勢能變化ΔEAB=—WAB=—qUAB(電勢能的增量等于電場力做功的負值) 12、電容C=Q/U(定義式,計算式){C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)} 13、平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數) 常見電容器 14、帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15、帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下) 類平垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d) 拋運動平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m 注: (1)兩個完全相同的帶電金屬小球接觸時,電量分配規律:原帶異種電荷的先中和后平分,原帶同種電荷的總量平分; (2)電場線從正電荷出發終止于負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直; 3)常見電場的電場線分布要求熟記; (4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關; (5)處于靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直于導體表面,導體內部合場強為零,導體內部沒有凈電荷,凈電荷只分布于導體外表面; (6)電容單位換算:1F=106μF=1012PF; (7)電子伏(eV)是能量的單位,1eV=1。60×10—19J; (8)其它相關內容:靜電屏蔽/示波管、示波器及其應用等勢面。 六、恒定電流 1、電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)} 2、歐姆定律:I=U/R{I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)} 3、電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的'長度(m),S:導體橫截面積(m2)} 4、閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外 {I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)} 5、電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)} 6、焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)} 7、純電阻電路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8、電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總 {I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率} 9、電路的串/并聯串聯電路(P、U與R成正比)并聯電路(P、I與R成反比) 電阻關系(串同并反)R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 電流關系I總=I1=I2=I3 I并=I1+I2+I3+ 電壓關系U總=U1+U2+U3+ U總=U1=U2=U3 功率分配P總=P1+P2+P3+ P總=P1+P2+P3+ 10、歐姆表測電阻 (1)電路組成(2)測量原理 兩表筆短接后,調節Ro使電表指針滿偏,得 Ig=E/(r+Rg+Ro) 接入被測電阻Rx后通過電表的電流為 Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx) 由于Ix與Rx對應,因此可指示被測電阻大小 (3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。 (4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。 11、伏安法測電阻 電流表內接法:電流表外接法: 電壓表示數:U=UR+UA電流表示數:I=IR+IV Rx的測量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R) 選用電路條件Rx>>RA [或Rx>(RARV)1/2]選用電路條件Rx< 12、滑動變阻器在電路中的限流接法與分壓接法 限流接法 電壓調節范圍小,電路簡單,功耗小電壓調節范圍大,電路復雜,功耗較大 便于調節電壓的選擇條件Rp>Rx便于調節電壓的選擇條件Rp 注1)單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω (2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大; (3)串聯總電阻大于任何一個分電阻,并聯總電阻小于任何一個分電阻; (4)當電源有內阻時,外電路電阻增大時,總電流減小,路端電壓增大; (5)當外電路電阻等于電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(2r); (6)其它相關內容:電阻率與溫度的關系半導體及其應用超導及其應用〔見第二冊P127〕。 七、磁場 1、磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A?m 2、安培力F=BIL;(注:L⊥B){B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)} 3、洛侖茲力f=qVB(注V⊥B);質譜儀{f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)} 4、在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種): (1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0 (2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下); 解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。 注:(1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負; (2)磁感線的特點及其常見磁場的磁感線分布要掌握; (3)其它相關內容:地磁場/磁電式電表原理/回旋加速器/磁性材料 八、電磁感應 1、[感應電動勢的大小計算公式] 1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率} 2)E=BLV垂(切割磁感線運動){L:有效長度(m)} 3)Em=nBSω(交流發電機最大的感應電動勢){Em:感應電動勢峰值} 4)E=BL2ω/2(導體一端固定以ω旋轉切割){ω:角速度(rad/s),V:速度(m/s)} 注:(1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點; (2)自感電流總是阻礙引起自感電動勢的電流的變化; (3)單位換算:1H=103mH=106μH。 (4)其它相關內容:自感/日光燈。 摩擦力 1、定義:當一個物體在另一個物體的表面上相對運動(或有相對運動的趨勢)時,受到的阻礙相對運動(或阻礙相對運動趨勢)的力,叫摩擦力,可分為靜摩擦力和滑動摩擦力。 2、產生條件:①接觸面粗糙;②相互接觸的物體間有彈力;③接觸面間有相對運動(或相對運動趨勢)。 說明:三個條件缺一不可,特別要注意“相對”的理解。 3、摩擦力的方向: ①靜摩擦力的方向總跟接觸面相切,并與相對運動趨勢方向相反。 ②滑動摩擦力的方向總跟接觸面相切,并與相對運動方向相反。 說明: (1)“與相對運動方向相反”不能等同于“與運動方向相反”。滑動摩擦力方向可能與運動方向相同,可能與運動方向相反,可能與運動方向成一夾角。 (2)滑動摩擦力可能起動力作用,也可能起阻力作用。 4、摩擦力的大小: (1)靜摩擦力的大小: ①與相對運動趨勢的強弱有關,趨勢越強,靜摩擦力越大,但不能超過靜摩擦力,即0≤f≤fm但跟接觸面相互擠壓力FN無直接關系。具體大小可由物體的運動狀態結合動力學規律求解。 ②靜摩擦力略大于滑動摩擦力,在中學階段討論問題時,如無特殊說明,可認為它們數值相等。 ③效果:阻礙物體的相對運動趨勢,但不一定阻礙物體的運動,可以是動力,也可以是阻力。 (2)滑動摩擦力的大小: 滑動摩擦力跟壓力成正比,也就是跟一個物體對另一個物體表面的垂直作用力成正比。 公式:F=μFN(F表示滑動摩擦力大小,FN表示正壓力的大小,μ叫動摩擦因數)。 說明: ①FN表示兩物體表面間的壓力,性質上屬于彈力,不是重力,更多的情況需結合運動情況與平衡條件加以確定。 ②μ與接觸面的材料、接觸面的情況有關,無單位。 ③滑動摩擦力大小,與相對運動的速度大小無關。 5、摩擦力的效果:總是阻礙物體間的相對運動(或相對運動趨勢),但并不總是阻礙物體的運動,可能是動力,也可能是阻力。 說明:滑動摩擦力的大小與接觸面的大小、物體運動的速度和加速度無關,只由動摩擦因數和正壓力兩個因素決定,而動摩擦因數由兩接觸面材料的性質和粗糙程度有關。 動量守恒 所謂“動量守恒”,意指“動量保持恒定”。考慮到“動量改變”的原因是“合外力的沖”所致,所以“動量守恒條件”的直接表述似乎應該是“合外力的沖量為O”。但在動量守恒定律的實際表述中,其“動量守恒條件”卻是“合外力為。”。究其原因,實際上可以從如下兩個方面予以解釋。 (1)“條件表述”應該針對過程 考慮到“沖量”是“力”對“時間”的累積,而“合外力的沖量為O”的相應條件可以有三種不同的情況與之對應:第一,合外力為O而時間不為O;第二,合外力不為0而時間為。;第三,合外力與時間均為。顯然,對應于后兩種情況下的相應表述沒有任何實際意義,因為在“時間為。”的相應條件下討論動量守恒,實際上就相當于做出了一個毫無價值的無效判斷―“此時的動量等于此時的動量”。這就是說:既然動量守恒定律針對的是系統經歷某一過程而在特定條件下動量保持恒定,那么相應的條件就應該針對過程進行表述,就應該回避“合外力的沖量為O”的相應表述中所包含的那兩種使“過程”退縮為“狀態”的無價值狀況。 (2)“條件表述”須精細到狀態 考慮到“沖量”是“過程量”,而作為“過程量”的“合外力的沖量”即使為。,也不能保證系統的動量在某一過程中始終保持恒定。因為完全可能出現如下狀況,即:在某一過程中的前一階段,系統的動量發生了變化;而在該過程中的后一階段,系統的動量又發生了相應于前一階段變化的逆變化而恰好恢復到初狀態下的動量。對應于這樣的過程,系統在相應過程中“合外力的沖量”確實為O,但卻不能保證系統動量在過程中保持恒定,充其量也只是保證了系統在過程的始末狀態下的動量相同而已,這就是說:既然動量守恒定律針對的'是系統經歷某一過程而在特定條件下動量保持恒定,那么相應的條件就應該在針對過程進行表述的同時精細到過程的每一個狀態,就應該回避“合外力的沖量為。”的相應表述只能夠控制“過程”而無法約束“狀態。 ‘彈性正碰”的“定量研究” “彈性正碰”的“碰撞結果” 質量為跳,和m:的小球分別以vl。和跳。的速度發生彈性正碰,設碰后兩球的速度分別為二,和二2,則根據碰撞過程中動量守恒和彈性碰撞過程中系統始末動能相等的相應規律依次可得。 “碰撞結果”的“表述結構” 作為“碰撞結果”,碰后兩個小球的速度表達式在結構上具備了如下特征,即:若把任意一個小球的碰后速度表達式中的下標作“1”與“2”之間的代換,則必將得到另一個小球的碰后速度表達式。“碰撞結構”在“表述結構”上所具備的上述特征,其緣由當追溯到“彈性正碰”所遵循的規律表達的結構特征:在碰撞過程動量守恒和碰撞始末動能相等的兩個方程中,若針對下標作“1”與“2”之間的代換,則方程不變。 “動量”與“動能”的切入點 “動量”和“動能”都是從動力學角度描述機械運動狀態的參量,若在其間作細致的比對和深人的剖析,則區別是顯然的:動量決定著物體克服相同阻力還能夠運動多久,動能決定著物體克服相同阻力還能夠運動多遠;動量是以機械運動量化機械運動,動能則是以機械運動與其他運動的關系量化機械運動。 光子說 ⑴量子論:1900年德國物理學家普朗克提出:電磁波的發射和吸收是不連續的,而是一份一份的,每一份電磁波的能量。 ⑵光子論:1905年愛因斯坦提出:空間傳播的光也是不連續的,而是一份一份的,每一份稱為一個光子,光子具有的能量與光的頻率成正比。 光的波粒二象性 光既表現出波動性,又表現出粒子性。大量光子表現出的波動性強,少量光子表現出的粒子性強;頻率高的光子表現出的粒子性強,頻率低的光子表現出的波動性強。 實物粒子也具有波動性,這種波稱為德布羅意波,也叫物質波。滿足下列關系: 從光子的概念上看,光波是一種概率波。 電子的發現和湯姆生的原子模型: ⑴電子的發現: 1897年英國物理學家湯姆生,對陰極射線進行了一系列研究,從而發現了電子。 電子的發現表明:原子存在精細結構,從而打破了原子不可再分的觀念。 ⑵湯姆生的原子模型: 1903年湯姆生設想原子是一個帶電小球,它的正電荷均勻分布在整個球體內,而帶負電的電子鑲嵌在正電荷中。 氫原子光譜 氫原子是最簡單的原子,其光譜也最簡單。 1885年,巴耳末對當時已知的,在可見光區的14條譜線作了分析,發現這些譜線的波長可以用一個公式表示: 式中R叫做里德伯常量,這個公式成為巴爾末公式。 除了巴耳末系,后來發現的氫光譜在紅外和紫個光區的其它譜線也都滿足與巴耳末公式類似的關系式。 氫原子光譜是線狀譜,具有分立特征,用經典的電磁理論無法解釋。 1.物體做勻速圓周運動的條件是合外力大小恒定且方向始終指向圓心,或與速度方向始終垂直。 2.做勻速圓周運動的物體,在所受到的合外力突然消失時,物體將沿圓周的切線方向飛出做勻速直線運動;在所提供的向心力大于所需要的向心力時,物體將做向心運動;在所提供的向心力小于所需要的向心力時,物體將做離心運動。 3.開普勒第一定律的內容是所有的行星圍繞太陽運動的軌道都是橢圓,太陽在橢圓軌道的一個焦點上。開普勒第三定律的內容是所有行星的半長軸的三次方跟公轉周期的平方的比值都相等,即R3/T2=k。 4.地球質量為M,半徑為R,萬有引力常量為G,地球表面的重力加速度為g,則其間存在的一個常用的關系是。(類比其他星球也適用)。 5.第一宇宙速度(近地衛星的環繞速度)的表達式v1=(GM/R)1/2=(gR)1/2,大小為7.9m/s,它是發射衛星的最小速度,也是地球衛星的環繞速度。隨著衛星的高度h的增加,v減小,ω減小,a減小,T增加。 6.物體做勻減速直線運動,末速度為零時,可以等效為初速度為零的反向的勻加速直線運動。 7.對于加速度恒定的'勻減速直線運動對應的正向過程和反向過程的時間相等,對應的速度大小相等(如豎直上拋運動) 8.質量是慣性大小的量度。慣性的大小與物體是否運動和怎樣運動無關,與物體是否受力和怎樣受力無關,慣性大小表現為改變物理運動狀態的難易程度。 9.做平拋或類平拋運動的物體在任意相等的時間內速度的變化都相等,方向與加速度方向一致(即Δv=at)。 10.做平拋或類平拋運動的物體,末速度的反向延長線過水平位移的中點。 1、牛頓第二定律的定義 物體的加速度跟物體所受的合外力F成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。 2、牛頓第二定律的公式 ∑F=ma,∑F表示物體受到的合外力,m表示物體的質量,a表示物體的加速度。根據牛頓第二定律,規定國際單位制中力的單位“牛頓”(簡稱“牛”,符號是N)為:使質量是1kg的物體產生1m/s2的加速度的力為1N,即1N=1kg·m/s2。 3、牛頓第二定律的六個性質 (1)因果性:力是產生加速度的原因。若不存在力,則沒有加速度。 (2)矢量性:力和加速度都是矢量,物體加速度方向由物體所受合外力的方向決定。牛頓第二定律數學表達式∑F=ma中,等號不僅表示左右兩邊數值相等,也表示方向一致,即物體加速度方向與所受合外力方向相同。根據他的矢量性可以用正交分解法講力合成或分解。 (3)瞬時性:當物體(質量一定)所受外力發生突然變化時,作為由力決定的加速度的大小或方向也要同時發生突變;當合外力為零時,加速度同時為零,加速度與合外力保持一一對應關系。牛頓第二定律是一個瞬時對應的規律,表明了力的瞬間效應。 (4)相對性:自然界中存在著一種坐標系,在這種坐標系中,當物體不受力時將保持勻速直線運動或靜止狀態,這樣的.坐標系叫慣性參照系。地面和相對于地面靜止或作勻速直線運動的物體可以看作是慣性參照系,牛頓定律只在慣性參照系中才成立。 (5)獨立性:物體所受各力產生的加速度,互不干擾,而物體的實際加速度則是每一個力產生加速度的矢量和,分力和分加速度在各個方向上的分量關系,也遵循牛頓第二定律。 (6)同一性:a與F與同一物體xx一狀態相對應。 【高三物理知識點總結】相關文章: 高三物理知識點總結03-18 高三物理知識點總結06-08 高三物理知識點總結10-17 高三物理備考知識點總結05-22 高三物理知識點總結梳理06-08 關于高三物理知識點總結06-18 高三物理的重要知識點總結03-30 高三物理必考知識點總結08-05 高三物理知識點06-08高三物理知識點總結13
高三物理知識點總結14
高三物理知識點總結15