色噜噜人体337p人体 I 超碰97观看 I 91久久香蕉国产日韩欧美9色 I 色婷婷我要去我去也 I 日本午夜a I 国产av高清怡春院 I 桃色精品 I 91香蕉国产 I 另类小说第一页 I 日操夜夜操 I 久久性色 I 日韩欧在线 I 国产深夜在线观看 I 免费的av I 18在线观看视频 I 他也色在线视频 I 亚洲熟女中文字幕男人总站 I 亚洲国产综合精品中文第一 I 人妻丰满熟av无码区hd I 新黄色网址 I 国产精品真实灌醉女在线播放 I 欧美巨大荫蒂茸毛毛人妖 I 国产一区欧美 I 欧洲亚洲1卡二卡三卡2021 I 国产亚洲欧美在线观看三区 I 97精品无人区乱码在线观看 I 欧美妇人 I 96精品在线视频 I 国产人免费视频在线观看 I 91麻豆国产福利在线观看

      初中數學知識點總結

      時間:2025-02-19 07:53:43 知識點總結 我要投稿

      新人教版初中數學知識點總結(完整版)

        總結是指對某一階段的工作、學習或思想中的經驗或情況加以總結和概括的書面材料,它能夠使頭腦更加清醒,目標更加明確,是時候寫一份總結了。那么你真的懂得怎么寫總結嗎?以下是小編為大家整理的新人教版初中數學知識點總結(完整版),僅供參考,大家一起來看看吧。

      新人教版初中數學知識點總結(完整版)

      新人教版初中數學知識點總結(完整版)1

        1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

        2、菱形的性質:⑴矩形具有平行四邊形的一切性質;

        ⑵菱形的四條邊都相等;

        ⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

        ⑷菱形是軸對稱圖形。

        提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。

        3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

        4、因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)

        5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

        6、公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的`積就是這個多項式各項的公因式。

        7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

        8、平方根表示法:一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。

        9、中被開方數的取值范圍:被開方數a≥0

        10、平方根性質:①一個正數的平方根有兩個,它們互為相反數。②0的平方根是它本身0。③負數沒有平方根開平方;求一個數的平方根的運算,叫做開平方。

        11、平方根與算術平方根區別:定義不同、表示方法不同、個數不同、取值范圍不同。

        12、聯系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0

        13、含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。

        14、求正數a的算術平方根的方法;

        完全平方數類型:①想誰的平方是數a。②所以a的平方根是多少。③用式子表示。

        求正數a的算術平方根,只需找出平方后等于a的正數。

      新人教版初中數學知識點總結(完整版)2

        1.圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。

        2.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

        3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

        4.圓是定點的距離等于定長的點的集合。

        5.圓的內部可以看作是圓心的距離小于半徑的點的集合;圓的外部可以看作是圓心的距離大于半徑的點的集合。

        6.不在同一直線上的三點確定一個圓。

        7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

        推論1:

        ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;

        ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧;

        ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

        推論2:圓的兩條平行弦所夾的弧相等。

        8.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

        9.定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角。

        10.經過切點且垂直于切線的直線必經過圓心。

        11.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的'切線。

        12.切線的性質定理圓的切線垂直于經過切點的半徑。

        13.經過圓心且垂直于切線的直線必經過切點

        14.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。

        15.圓的外切四邊形的兩組對邊的和相等外角等于內對角。

        16.如果兩個圓相切,那么切點一定在連心線上。

        17.

        ①兩圓外離d>R+r

        ②兩圓外切d=R+r

        ③兩圓相交d>R-r)

        ④兩圓內切d=R-r(R>r)

        ⑤兩圓內含d=r)

        18.定理把圓分成n(n≥3):

        ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

        ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。

        19.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓。

        20.弧長計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

        21.內公切線長= d-(R-r)外公切線長= d-(R+r)。

        22.定理一條弧所對的圓周角等于它所對的圓心角的一半。

        23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

        24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

      新人教版初中數學知識點總結(完整版)3

        第一章 豐富的圖形世界

        1、幾何圖形

        從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

        2、點、線、面、體

        (1)幾何圖形的組成

        點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

        線:面和面相交的地方是線,分為直線和曲線。

        面:包圍著體的是面,分為平面和曲面。

        體:幾何體也簡稱體。

        (2)點動成線,線動成面,面動成體。

        3、生活中的立體圖形

        生活中的立體圖形

        柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

        正有理數 整數

        有理數 零 有理數

        負有理數 分數

        2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零

        3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。

        4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒有倒數。

        5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

        正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。互為相反數的兩個數的絕對值相等。

        6、有理數比較大小:正數大于0,負數小于0,正數大于負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。

        7、有理數的運算:

        (1)五種運算:加、減、乘、除、乘方

        多個數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。

        有理數加法法則:

        同號兩數相加,取相同的符號,并把絕對值相加。

        異號兩數相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。

        一個數同0相加,仍得這個數。

        互為相反數的兩個數相加和為0。

        有理數減法法則:減去一個數,等于加上這個數的相反數!

        有理數乘法法則:

        兩數相乘,同號得正,異號得負,并把絕對值相乘。

        任何數與0相乘,積仍為0。

        有理數除法法則:

        兩個有理數相除,同號得正,異號得負,并把絕對值相除。

        0除以任何非0的數都得0。

        注意:0不能作除數。

        有理數的乘方:求n個相同因數a的積的運算叫做乘方。

        正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。

        (2)有理數的運算順序

        先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

        (3)運算律

        加法交換律 加法結合律

        乘法交換律 乘法結合律

        乘法對加法的分配律

        8、科學記數法

        一般地,一個大于10的數可以表示成的形式,其中,n是正整數,這種記數方法叫做科學記數法。(n=整數位數-1)

        第三章 整式及其加減

        1、代數式

        用運算符號(加、減、乘、除、乘方、開方等)把數或表示數的字母連接而成的.式子叫做代數式。單獨的一個數或一個字母也是代數式。

        注意:①代數式中除了含有數、字母和運算符號外,還可以有括號;

        ②代數式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;

        ③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。

        ※代數式的書寫格式:

        ①代數式中出現乘號,通常省略不寫,如vt;

        ②數字與字母相乘時,數字應寫在字母前面,如4a;

        ③帶分數與字母相乘時,應先把帶分數化成假分數,如應寫作;

        ④數字與數字相乘,一般仍用“×”號,即“×”號不省略;

        ⑤在代數式中出現除法運算時,一般寫成分數的形式,如4÷(a-4)應寫作;注意:分數線具有“÷”號和括號的雙重作用。

        ⑥在表示和(或)差的代數式后有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的后面,如平方米。

        2、整式:單項式和多項式統稱為整式。

        ①單項式:都是數字和字母乘積的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個單項式的次數;數字因數叫做這個單項式的系數。

        注意:1.單獨的一個數或一個字母也是單項式;2.單獨一個非零數的次數是0;3.當單項式的系數為1或-1時,這個“1”應省略不寫,如-ab的系數是-1,a3b的系數是1。

        ②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。

        3、同類項:所含字母相同,并且相同字母的指數也相同的項叫做同類項。

        注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。

        ②同類項與系數無關,與字母的排列順序無關;

        ③幾個常數項也是同類項。

        4、合并同類項法則:把同類項的系數相加,字母和字母的指數不變。

        5、去括號法則

        ①根據去括號法則去括號:

        括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。

        ②根據分配律去括號:

        括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據乘法的分配律用+1或-1去乘括號里的每一項以達到去括號的目的。

        6、添括號法則

        添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。

        7、整式的運算:

        整式的加減法:(1)去括號;(2)合并同類項。

        第四章 基本平面圖形

        2、直線的性質

        (1)直線公理:經過兩個點有且只有一條直線。(兩點確定一條直線。)

        (2)過一點的直線有無數條。

        (3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。

        3、線段的性質

        (1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。)

        (2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。

        (3)線段的大小關系和它們的長度的大小關系是一致的。

        4、線段的中點:

        點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB (或AB=2AM=2BM)。

        5、角:

        有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點旋轉而成的。

        6、角的表示

        角的表示方法有以下四種:

        ①用數字表示單獨的角,如∠1,∠2,∠3等。

        ②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

        ③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。

        ④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

        注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。

        7、角的度量

        角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

        把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

        把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

        1°=60’,1’=60”

        8、角的平分線

        從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

        9、角的性質

        (1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。

        (2)角的大小可以度量,可以比較,角可以參與運算。

        10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。

        11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。

        從一個n邊形的同一個頂點出發,分別連接這個頂點與其余各頂點,可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。

        12、圓:平面上,一條線段繞著一個端點旋轉一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

        圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。

        第五章 一元一次方程

        1、方程

        含有未知數的等式叫做方程。

        2、方程的解

        能使方程左右兩邊相等的未知數的值叫做方程的解。

        3、等式的性質

        (1)等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。

        (2)等式的兩邊同時乘以同一個數((或除以同一個不為0的數),所得結果仍是等式。

        4、一元一次方程

        只含有一個未知數,并且未知數的最高次數是1的整式方程叫做一元一次方程。

        5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.

        6、解一元一次方程的一般步驟:

        (1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數的系數化為1

        第六章 數據的收集與整理

        1、普查與抽樣調查

        為了特定目的對全部考察對象進行的全面調查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

        從總體中抽取部分個體進行調查,這種調查稱為抽樣調查,其中從總體抽取的一部分個體叫做總體的一個樣本。

        2、扇形統計圖

        扇形統計圖:利用圓與扇形來表示總體與部分的關系,扇形的大小反映部分占總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個扇形所占的百分比之和為1)

        圓心角度數=360°×該項所占的百分比。(各個部分的圓心角度數之和為360°)

        3、頻數直方圖

        頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進行了分組畫在橫軸上,縱軸表示各組數據的頻數。

        4、各種統計圖的特點

        條形統計圖:能清楚地表示出每個項目的具體數目。

        折線統計圖:能清楚地反映事物的變化情況。

        扇形統計圖:能清楚地表示出各部分在總體中所占的百分比。

      新人教版初中數學知識點總結(完整版)4

        一、函數及其相關概念

        1、變量與常量

        在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。

        一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。

        2、函數解析式

        用來表示函數關系的數學式子叫做函數解析式或函數關系式。

        使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

        3、函數的三種表示法及其優缺點

        (1)解析法

        兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。

        (2)列表法

        把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

        (3)圖像法

        用圖像表示函數關系的方法叫做圖像法。

        4、由函數解析式畫其圖像的一般步驟

        (1)列表:列表給出自變量與函數的一些對應值

        (2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

        (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

        二、相交線與平行線

        1、知識網絡結構

        2、知識要點

        (1)在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。

        (2)在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。

        (3)兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是

        鄰補角。鄰補角的性質:鄰補角互補。如圖1所示,與互為鄰補角,

        與互為鄰補角。+=180°;+=180°;+=180°;+=180°。

        3、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=; =。

        4、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,

        其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。

        垂線的性質:

        性質1:過一點有且只有一條直線與已知直線垂直。

        性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

        性質3:如圖2所示,當a⊥b時,====90°。

        點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

        5、同位角、內錯角、同旁內角基本特征:

        在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣的兩個角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。

        在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。

        在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。

        三、實數

        1、實數的分類

        (1)按定義分類:

        (2)按性質符號分類:

        注:0既不是正數也不是負數.

        2、實數的相關概念

        (1)相反數

        ①代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.

        ②幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.

        ③互為相反數的兩個數之和等于0.a、b互為相反數a+b=0.

        (2)絕對值|a|≥0.

        (3)倒數(1)0沒有倒數(2)乘積是1的兩個數互為倒數.a、b互為倒數.

        (4)平方根

        ①如果一個數的`平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.

        ②一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作.

        (5)立方根

        如果x3=a,那么x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.

        3、實數與數軸

        數軸定義:規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.

        4、實數大小的比較

        (1)對于數軸上的任意兩個點,靠右邊的點所表示的數較大.

        (2)正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.

        (3)無理數的比較大小:

      新人教版初中數學知識點總結(完整版)5

        其實角的大小與邊的長短沒有關系,角的大小決定于角的兩條邊張開的程度。

        角的靜態定義

        具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

        角的動態定義

        一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

        角的符號

        角的符號:∠

        角的種類

        在動態定義中,取決于旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。以度、分、秒為單位的'角的度量制稱為角度制。此外,還有密位制、弧度制等。

        銳角:大于0°,小于90°的角叫做銳角。

        直角:等于90°的角叫做直角。

        鈍角:大于90°而小于180°的角叫做鈍角。

        平角:等于180°的角叫做平角。

        優角:大于180°小于360°叫優角。

        劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

        角周角:等于360°的角叫做周角。

        負角:按照順時針方向旋轉而成的角叫做負角。

        正角:逆時針旋轉的角為正角。

        0角:等于零度的角。

        特殊角

        余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。

        對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。

        鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關系的兩個角,互為鄰補角。

        內錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的

        內側,并且在第三條直線的兩側,那么這樣的一對角叫做內錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5

        同旁內角:兩個角都在截線的同一側,且在兩條被截線之間,具有這樣位置關系的一對角互為同旁內角。如:∠1和∠5,∠2和∠6

        同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側,具有這樣位置關系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

        外錯角:兩條直線被第三條直線所截,構成了八個角。如果兩個角都在兩條被截線的外側,并且在截線的兩側,那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。

        同旁外角:兩個角都在截線的同一側,且在兩條被截線之外,具有這樣位置關系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

        終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

        A{bb=k_360+a,k∈Z}表示角度制;

        B{bb=2kπ+a,k∈Z}表示弧度制

      新人教版初中數學知識點總結(完整版)6

        一元一次方程定義

        通過化簡,只含有一個未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

        一元指方程僅含有一個未知數,一次指未知數的次數為1,且未知數的系數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,并且a≠0)叫一元一次方程的標準形式。這里a是未知數的系數,b是常數,x的次數必須是1。

        即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的系數不為0。

        一元一次方程的五個核心問題

        一、什么是等式?1+1=1是等式嗎?

        表示相等關系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數值代替等式中的字母,等式的兩邊總是相等,由數字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

        一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

        等式與代數式不同,等式中含有等號,代數式中不含等號。

        等式有兩個重要性質1)等式的兩邊都加上或減去同一個數或同一個整式,所得結果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數除數不為零,所得結果仍然是一個等式。

        二、什么是方程,什么是一元一次方程?

        含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數,兩者缺一不可。

        只含有一個未知數,并且含未知數的式子都是整式,未知數的次數是1,系數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的`是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結論。

        凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。

        三、等式有什么牛掰的基本性質嗎?

        將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質1。

        移項時不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會顯得簡便些。

        去分母,將未知數的系數化為1,則是依據等式的基本性質2進行的。

        四、等式一定是方程嗎?方程一定是等式嗎?

        等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數式,但它們還是有區別的。方程僅是含有未知數的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。

        五、"解方程"與"方程的解"是一回事兒嗎?

        方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

      新人教版初中數學知識點總結(完整版)7

        動點與函數圖象問題常見的四種類型:

         1、三角形中的動點問題:動點沿三角形的邊運動,根據問題中的常量與變量之間的關系,判斷函數圖象.

        2、四邊形中的動點問題:動點沿四邊形的邊運動,根據問題中的常量與變量之間的關系,判斷函數圖象.

        3、圓中的動點問題:動點沿圓周運動,根據問題中的常量與變量之間的關系,判斷函數圖象.

        4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據問題中的常量與變量之間的關系,判斷函數圖象.

        圖形運動與函數圖象問題常見的三種類型:

        1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經過三角形或四邊形,根據問題中的常量與變量之間的關系,進行分段,判斷函數圖象.

        2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經過另一個多邊形,根據問題中的常量與變量之間的關系,進行分段,判斷函數圖象.

        3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經過一個圓,根據問題中的常量與變量之間的關系,進行分段,判斷函數圖象.

        動點問題常見的'四種類型:

        1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構成的新圖形與原圖形的邊或角的關系.

        2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關系.

        3、圓中的動點問題:動點沿圓周運動,探究構成的新圖形的邊角等關系.

        4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構成的三角形是等腰三角形或與已知圖形相似等問題.

        總結反思:

         本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的解析式,三角形全等的判定和性質,等腰直角三角形的性質,平行線的性質等,數形結合思想的應用是解題的關鍵.

        解答動態性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發掘“動”與“靜”的內在聯系,尋求變化規律,從變中求不變,從而達到解題目的

        解答函數的圖象問題一般遵循的步驟:

         1、根據自變量的取值范圍對函數進行分段.

        2、求出每段的解析式.

        3、由每段的解析式確定每段圖象的形狀.

        對于用圖象描述分段函數的實際問題,要抓住以下幾點:

        1、自變量變化而函數值不變化的圖象用水平線段表示.

        2、自變量變化函數值也變化的增減變化情況.

        3、函數圖象的最低點和最高點.

      新人教版初中數學知識點總結(完整版)8

        定義

        對應角相等,對應邊成比例的兩個三角形叫做相似三角形

        比值與比的概念

        比值是一個具體的數字如:AB/EF=2

        而比不是一個具體的數字如:AB/EF=2:1判定方法

        證兩個相似三角形應該把表示對應頂點的字母寫在對應的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應頂點可能沒有寫在對應的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個三角形的對應頂點寫在了對應的位置上。

        方法一(預備定理)

        平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的`基礎。這個引理的證明方法需要平行線與線段成比例的證明)

        方法二

        如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似。

        方法三

        如果兩個三角形的兩組對應邊成比例,并且相應的夾角相等,

        那么這兩個三角形相似

        方法四

        如果兩個三角形的三組對應邊成比例,那么這兩個三角形相似

        方法五(定義)

        對應角相等,對應邊成比例的兩個三角形叫做相似三角形

        三個基本型

        Z型A型反A型

        方法六

        兩個直角三角形中,斜邊與直角邊對應成比例,那么兩三角形相似。一定相似的三角形

        1、兩個全等的三角形

        (全等三角形是特殊的相似三角形,相似比為1:1)

        2、兩個等腰三角形

        (兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)

        3、兩個等邊三角形

        (兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)

        4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)

        圖形的學習需要大家對于知識的詳細了解和滲透,而不是一帶而過。

      新人教版初中數學知識點總結(完整版)9

        誘導公式的本質

        所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。

        常用的誘導公式

        公式一: 設為任意角,終邊相同的角的同一三角函數的'值相等:

        sin(2k)=sin kz

        cos(2k)=cos kz

        tan(2k)=tan kz

        cot(2k)=cot kz

        公式二: 設為任意角,的三角函數值與的三角函數值之間的關系:

        sin()=-sin

        cos()=-cos

        tan()=tan

        cot()=cot

        公式三: 任意角與 -的三角函數值之間的關系:

        sin(-)=-sin

        cos(-)=cos

        tan(-)=-tan

        cot(-)=-cot

        公式四: 利用公式二和公式三可以得到與的三角函數值之間的關系:

        sin()=sin

        cos()=-cos

        tan()=-tan

        cot()=-cot

      新人教版初中數學知識點總結(完整版)10

        1、一元二次方程解法:

        (1)配方法:(X±a)2=b(b≥0)注:二次項系數必須化為1

        (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

        若b2-4ac>0則有兩個不相等的.實根,若b2-4ac=0則有兩個相等的實根,若b2-4ac<0則無解

        若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

        (3)分解因式法

        ①提公因式法:ma+mb=0→m(a+b)=0

        平方差公式:a2-b2=0→(a+b)(a-b)=0

        ②運用公式法:

        完全平方公式:a2±2ab+b2=0→(a±b)2=0

        ③十字相乘法

        2、銳角三角函數定義

        銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。

        正弦(sin):對邊比斜邊,即sinA=a/c;

        余弦(cos):鄰邊比斜邊,即cosA=b/c;

        正切(tan):對邊比鄰邊,即tanA=a/b;

        余切(cot):鄰邊比對邊,即cotA=b/a;

        3、積的關系

        sinα=tanα·cosα

        cosα=cotα·sinα

        tanα=sinα·secα

        cotα=cosα·cscα

        secα=tanα·cscα

        cscα=secα·cotα

        4、倒數關系

        tanα·cotα=1

        sinα·cscα=1

        cosα·secα=1

        5、兩角和差公式

        sin(A+B) = sinAcosB+cosAsinB

        sin(A-B) = sinAcosB-cosAsinB

        cos(A+B) = cosAcosB-sinAsinB

        cos(A-B) = cosAcosB+sinAsinB

        tan(A+B) = (tanA+tanB)/(1-tanAtanB)

        tan(A-B) = (tanA-tanB)/(1+tanAtanB)

        cot(A+B) = (cotAcotB-1)/(cotB+cotA)

        cot(A-B) = (cotAcotB+1)/(cotB-cotA)

      新人教版初中數學知識點總結(完整版)11

        ①直線和圓無公共點,稱相離。 AB與圓O相離,d>r。

        ②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

        ③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的'切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

        平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:

        1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的方程

        如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

        如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

        如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

        2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規定x1

        當x=-C/Ax2時,直線與圓相離;

      新人教版初中數學知識點總結(完整版)12

        一、基本知識

        一、數與代數

        A、數與式:

        1、有理數:①整數→正整數,0,負整數;

        ②分數→正分數,負分數

        數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。

        ②任何一個有理數都可以用數軸上的一個點來表示。

        ③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。

        ④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

        絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

        ②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

        有理數的運算:帶上符號進行正常運算。

        加法:

        ①同號相加,取相同的符號,把絕對值相加。

        ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

        ③一個數與0相加不變。

        減法:減去一個數,等于加上這個數的相反數。

        乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。

        ②任何數與0相乘得0。

        ③乘積為1的兩個有理數互為倒數。

        除法:①除以一個數等于乘以一個數的倒數。

        ②0不能作除數。

        乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。

        混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

        2、實數

        無理數

        無理數:無限不循環小數叫無理數,例如:π=3.1415926…

        平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。

        ②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。

        ③一個正數有2個平方根;0的平方根為0;負數沒有平方根。

        ④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

        立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。

        ②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

        ③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

        實數:①實數分有理數和無理數。

        ②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣;

        ③每一個實數都可以在數軸上的一個點來表示。

        3、代數式

        代數式:單獨一個數或者一個字母也是代數式。

        合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。

        ③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。

        4、整式與分式

        整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。

        ②一個單項式中,所有字母的指數和叫做這個單項式的次數。

        ③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

        整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

        冪的運算:

        A^M+A^N=A^(M+N)

        (A^M)^N=A^(MN

        )

        (A/B)^N=A^N/B^N

        除法一樣。

        整式的乘法:

        ①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

        ②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

        ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

        公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

        完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

        整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

        ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

        分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

        方法:提公因式法、運用公式法、分組分解法、十字相乘法。

        分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

        ②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

        分式的運算:

        乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

        除法:除以一個分式等于乘以這個分式的倒數。

        加減法:①同分母分式相加減,分母不變,把分子相加減。

        ②異分母的分式先通分,化為同分母的分式,再加減。

        分式方程:①分母中含有未知數的方程叫分式方程。

        ②使方程的分母為0的解稱為原方程的增根。

        B、方程與不等式

        1、方程與方程組

        一元一次方程:①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

        ②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

        解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。

        二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的.方程叫做二元一次方程。

        二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

        適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

        二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

        解二元一次方程組的方法:代入消元法;加減消元法。

        一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程:ax^2+bx+c=0;

        1)一元二次方程的二次函數的關系

        大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y=0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖像與X軸的交點。也就是該方程的解了

        2)一元二次方程的解法

        大家知道,二次函數有頂點式(-b/2a

        ,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

        (1)配方法

        利用配方,使方程變為完全平方公式,在用直接開平方法去求出解

        (2)分解因式法

        提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

        (3)公式法

        這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

        3)解一元二次方程的步驟:

        (1)配方法的步驟:

        先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式

        (2)分解因式法的步驟:

        把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

        (3)公式法

        就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c

        4)韋達定理

        利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

        也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用

        5)一元二次方程根的情況

        利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao

        ta”,而△=b2-4ac,這里可以分為3種情況:

        I當△>0時,一元二次方程有2個不相等的實數根;

        II當△=0時,一元二次方程有2個相同的實數根;

        III當△B,則A+C>B+C;

        在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;

        例如:如果A>B,則A-C>B-C;

        在不等式中,如果乘以同一個正數,不等式符號不改向;

        例如:如果A>B,則A*C>B*C(C>0);

        在不等式中,如果乘以同一個負數,不等號改向;

        例如:如果A>B,則A*C

        如果不等式乘以0,那么不等號改為等號;

        所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等于0,否則不等式不成立;

        3、函數

        變量:因變量Y,自變量X。

        在用圖像表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。

        一次函數:①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。

        ②當B=0時,稱Y是X的正比例函數。

        一次函數的圖像:

        ①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖像。

        ②正比例函數Y=KX的圖像是經過原點的一條直線。

        ③在一次函數中,當K〈0,B〈O時,則經234象限;

        當K〈0,B〉0時,則經124象限;

        當K〉0,B〈0時,則經134象限;

        當K〉0,B〉0時,則經123象限。

        ④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

        二空間與圖形

        A、圖形的認識

        1、點,線,面

        點,線,面:①圖形是由點,線,面構成的。

        ②面與面相交得線,線與線相交得點。

        ③點動成線,線動成面,面動成體。

        展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。

        ②N棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

        截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

        視圖:主視圖,左視圖,俯視圖。

        多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

        弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

        ②圓可以分割成若干個扇形。

        2、角

        線:①線段有兩個端點。

        ②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

        ③將線段的兩端無限延長就形成了直線。直線沒有端點。

        ④經過兩點有且只有一條直線。

        比較長短:①兩點之間的所有連線中,線段最短。兩點之間直線最短。

        ②兩點之間線段的長度,叫做這兩點之間的距離。

        角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

        ②一度的1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

        角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。

        ②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角,180。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角,360。

        ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

        平行:①同一平面內,不相交的兩條直線叫做平行線。

        ②經過直線外一點,有且只有一條直線與這條直線平行。

        ③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

        垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

        ②互相垂直的兩條直線的交點叫做垂足。

        ③平面內,過一點有且只有一條直線與已知直線垂直。

        垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

        垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。

        垂直平分線定理:

        性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

        判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

        角平分線:把一個角平分的射線叫該角的角平分線。

        定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

        性質定理:角平分線上的點到該角兩邊的距離相等;

        判定定理:到角的兩邊距離相等的點在該角的角平分線上;

        正方形:一組鄰邊相等的矩形是正方形

        性質:正方形具有平行四邊形、菱形、矩形的一切性質

        判定:1、對角線相等的菱形2、鄰邊相等的矩形

        二、基本定理

        1、過兩點有且只有一條直線

        2、兩點之間線段最短

        3、同角或等角的補角相等

        ——補角=180-角度。

        4、同角或等角的余角相等——余角=90-角度。

        5、過一點有且只有一條直線和已知直線垂直

        6、直線外一點與直線上各點連接的所有線段中,垂線段最短

        7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行

        8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

        9、同位角相等,兩直線平行

        10、內錯角相等,兩直線平行

        11、同旁內角互補,兩直線平行

        12、兩直線平行,同位角相等

        13、兩直線平行,內錯角相等

        14、兩直線平行,同旁內角互補

        15、定理

        三角形兩邊的和大于第三邊

        16、推論

        三角形兩邊的差小于第三邊

        17、三角形內角和定理:

        三角形三個內角的和等于180°

        18、推論1

        直角三角形的兩個銳角互余

        19、推論2

        三角形的一個外角等于和它不相鄰的兩個內角的和

        20、推論3

        三角形的一個外角大于任何一個和它不相鄰的內角

        21、全等三角形的對應邊、對應角相等

        22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等

        23、角邊角公理(

        ASA):有兩角和它們的夾邊對應相等的

        兩個三角形全等

        24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等

        25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等

        26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等

        27、定理1

        在角的平分線上的點到這個角的兩邊的距離相等

        28、定理2

        到一個角的兩邊的距離相同的點,在這個角的平分線上

        29、角的平分線是到角的兩邊距離相等的所有點的集合

        30、推論1

        等腰三角形頂角的平分線平分底邊并且垂直于底邊

        31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

        32、推論3

        等邊三角形的各角都相等,并且每一個角都等于60°

        33、等腰三角形的判定定理

        如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

        34、等腰三角形的性質定理

        等腰三角形的兩個底角相等

        (即等邊對等角)

        35、推論1

        三個角都相等的三角形是等邊三角形

        36、推論

        有一個角等于60°的等腰三角形是等邊三角形

        37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

        38、直角三角形斜邊上的中線等于斜邊上的一半

        39、定理

        線段垂直平分線上的點和這條線段兩個端點的距離相等

        40、逆定理

        和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

        41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

        42、定理1

        關于某條直線對稱的兩個圖形是全等形

        43、定理

        如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

        44、定理3

        兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

        45、逆定理

        如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

        46、勾股定理

        直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

        47、勾股定理的逆定理

        如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形

        48、定理

        四邊形的內角和等于360°

        49、四邊形的外角和等于360°

        50、多邊形內角和定理

        n邊形的內角的和等于(n-2)×180°

        51、推論

        任意多邊的外角和等于360°

        52、平行四邊形性質定理1

        平行四邊形的對角相等

        53、平行四邊形性質定理2

        平行四邊形的對邊相等

        54、推論

        夾在兩條平行線間的平行線段相等

        55、平行四邊形性質定理3

        平行四邊形的對角線互相平分

        56、平行四邊形判定定理1

        兩組對角分別相等的四邊形是平行四邊形

        57、平行四邊形判定定理2

        兩組對邊分別相等的四邊

        形是平行四邊形

        58、平行四邊形判定定理3

        對角線互相平分的四邊形是平行四邊形

        59、平行四邊形判定定理4

        一組對邊平行相等的四邊形是平行四邊形

        60、矩形性質定理1

        矩形的四個角都是直角

        61、矩形性質定理2

        矩形的對角線相等

        62、矩形判定定理1

        有三個角是直角的四邊形是矩形

        63、矩形判定定理2

        對角線相等的平行四邊形是矩形

        64、菱形性質定理1

        菱形的四條邊都相等

        65、菱形性質定理2

        菱形的對角線互相垂直,并且每一條對角線平分一組對角

        66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

        67、菱形判定定理1

        四邊都相等的四邊形是菱形

        68、菱形判定定理2

        對角線互相垂直的平行四邊形是菱形

        69、正方形性質定理1

        正方形的四個角都是直角,四條邊都相等

        70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

        71、定理1

        關于中心對稱的兩個圖形是全等的

        72、定理2

        關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

        73、逆定理

        如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

        74、等腰梯形性質定理

        等腰梯形在同一底上的兩個角相等

        75、等腰梯形的兩條對角線相等

        76、等腰梯形判定定理

        在同一底上的兩個角相等的梯

        形是等腰梯形

        77、對角線相等的梯形是等腰梯形

        78、平行線等分線段定理

        如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

        79、推論1

        經過梯形一腰的中點與底平行的直線,必平分另一腰

        80、推論2

        經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

        81、三角形中位線定理

        三角形的中位線平行于第三邊,并且等于它的一半

        82、梯形中位線定理

        梯形的中位線平行于兩底,并且等于兩底和的一半

        L=(a+b)÷2

        S=L×h

        83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc

        如果

        ad=bc,那么a:b=c:d

        84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d

        85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

        86、平行線分線段成比例定理

        三條平行線截兩條直線,所得的對應線段成比例

        87、推論

        平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

        88、定理

        如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

        89、平行于三角形的一邊,并且和其他兩邊相交的直線,

        所截得的三角形的三邊與原三角形三邊對應成比例

        90、定理

        平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

        91、相似三角形判定定理1

        兩角對應相等,兩三角形相似(ASA)

        92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

        93、判定定理2

        兩邊對應成比例且夾角相等,兩三角形相似(SAS)

        94、判定定理3

        三邊對應成比例,兩三角形相似(SSS)

        95、定理

        如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)

        96、性質定理1

        相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

        97、性質定理2

        相似三角形周長的比等于相似比

        98、性質定理3

        相似三角形面積的比等于相似比的平方

        99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

        (a<90)

        100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

        101、圓是定點的距離等于定長的點的集合

        102、圓的內部可以看作是圓心的距離小于半徑的點的集合

        103、圓的外部可以看作是圓心的距離大于半徑的點的集合

        104、同圓或等圓的半徑相等

        105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

        106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

        107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

        108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

        109、定理

        不在同一直線上的三點確定一個圓。

        110、垂徑定理

        垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

        111、推論1

        ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

        ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧(直徑)

        ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

        112、推論2

        圓的兩條平行弦所夾的弧相等

        113、圓是以圓心為對稱中心的中心對稱圖形

        114、定理

        在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

        115、推論

        在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

        116、定理

        一條弧所對的圓周角等于它所對的圓心角的一半

        117、推論1

        同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

        118、推論2

        半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

        119、推論3

        如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

        120、定理

        圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

        121、①直線L和⊙O相交

        0<=d<r

        ②直線L和⊙O相切

        d=r

        ③直線L和⊙O相離

        d>r

        122、切線的判定定理

        經過半徑的外端并且垂直于這條半徑的直線是圓的切線

        123、切線的性質定理

        圓的切線垂直于經過切點的半徑

        124、推論1

        經過圓心且垂直于切線的直線必經過切點

        125、推論2

        經過切點且垂直于切線的直線必經過圓心

        126、切線長定理

        從圓外一點引圓的兩條切線相交與一點,它們的切線長相等

        ,圓心和這一點的連線平分兩條切線的夾角

        127、圓的外切四邊形的兩組對邊的和相等

        128、弦切角定理

        弦切角等于它所夾的弧對的圓周角?

        129、推論

        如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

        130、相交弦定理

        圓內的兩條相交弦,被交點分成的兩條線段長的積相等

        131、推論

        如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

        132、切割線定理

        從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

        133、推論

        從圓外一點引圓的兩條割線,這一點到每條

        割線與圓的交點的兩條線段長的積相等

        134、如果兩個圓相切,那么切點一定在連心線上

        135、①兩圓外離

        d>R+r

        ②兩圓外切

        d=R+r

        ③兩圓相交

        R-r<d<R+r(R>r)

        ④兩圓內切

        d=R-r(R>r)

        ⑤兩圓內含

        d<R-r(R>r)

        136、定理

        相交兩圓的連心線垂直平分兩圓的公共弦

        137、定理

        把圓平均分成n(n≥3):

        ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

        ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

        138、定理

        任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

        139、正n邊形的每個內角都等于(n-2)×180°/n

        140、定理

        正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

        141、正n邊形的面積Sn=pn*rn/2

        p表示正n邊形的周長

        142、正三角形面積√3a^2/4

        a表示邊長

        143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

        144、弧長計算公式:L=n兀R/180——》L=nR

        145、扇形面積公式:S扇形=n兀R^2/360=LR/2

        146、內公切線長=d-(R-r)

        外公切線長=d-(R+r)

      新人教版初中數學知識點總結(完整版)13

        一、平移變換:

        1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

        2。性質:(1)平移前后圖形全等;

        (2)對應點連線平行或在同一直線上且相等。

        3。平移的作圖步驟和方法:

        (1)分清題目要求,確定平移的方向和平移的距離;

        (2)分析所作的圖形,找出構成圖形的關健點;

        (3)沿一定的方向,按一定的距離平移各個關健點;

        (4)連接所作的各個關鍵點,并標上相應的字母;

        (5)寫出結論。

        二、旋轉變換:

        1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

        說明:

        (1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

        (2)旋轉過程中旋轉中心始終保持不動。

        (3)旋轉過程中旋轉的.方向是相同的。

        (4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

        2。性質:

        (1)對應點到旋轉中心的距離相等;

        (2)對應點與旋轉中心所連線段的夾角等于旋轉角;

        (3)旋轉前、后的圖形全等。

        3。旋轉作圖的步驟和方法:

        (1)確定旋轉中心及旋轉方向、旋轉角;

        (2)找出圖形的關鍵點;

        (3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;

        (4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。

        說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。

        常見考法

        (1)把平移旋轉結合起來證明三角形全等;

        (2)利用平移變換與旋轉變換的性質,設計一些題目。

        誤區提醒

        (1)弄反了坐標平移的上加下減,左減右加的規律;

        (2)平移與旋轉的性質沒有掌握。

      新人教版初中數學知識點總結(完整版)14

        一、數與代數

        a、數與式:

        1、有理數:

        ①整數→正整數/0/負整數

        ②分數→正分數/負分數

        數軸:

        ①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。

        ②任何一個有理數都可以用數軸上的一個點來表示。

        ③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。

        ④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

        絕對值:

        ①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

        ②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

        有理數的運算:加法:

        ①同號相加,取相同的符號,把絕對值相加。

        ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的`符號,并用較大的絕對值減去較小的絕對值。

        ③一個數與0相加不變。

        減法:減去一個數,等于加上這個數的相反數。

        乘法:

        ①兩數相乘,同號得正,異號得負,絕對值相乘。

        ②任何數與0相乘得0。

        ③乘積為1的兩個有理數互為倒數。

        除法:

        ①除以一個數等于乘以一個數的倒數。

        ②0不能作除數。

        乘方:求n個相同因數a的積的運算叫做乘方,乘方的結果叫冪,a叫底數,n叫次數。

        混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

        2、實數 無理數:無限不循環小數叫無理數

        平方根:

        ①如果一個正數x的平方等于a,那么這個正數x就叫做a的算術平方根。

        ②如果一個數x的平方等于a,那么這個數x就叫做a的平方根。

        ③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

        ④求一個數a的平方根運算,叫做開平方,其中a叫做被開方數。

        立方根:

        ①如果一個數x的立方等于a,那么這個數x就叫做a的立方根。

        ②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

        ③求一個數a的立方根的運算叫開立方,其中a叫做被開方數。

        實數:

        ①實數分有理數和無理數。

        ②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

        ③每一個實數都可以在數軸上的一個點來表示。

        3、代數式

        代數式:單獨一個數或者一個字母也是代數式。

        合并同類項:

        ①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。

        ②把同類項合并成一項就叫做合并同類項。

        ③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。

        4、整式與分式

        整式:

        ①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。

        ②一個單項式中,所有字母的指數和叫做這個單項式的次數。

        ③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

        整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

        冪的運算:am+an=a(m+n)

        (am)n=amn

        (a/b)n=an/bn 除法一樣。

        整式的乘法:

        ①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

        ②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

        ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

        公式兩條:平方差公式/完全平方公式

        整式的除法:

        ①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

        ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

        分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

        方法:提公因式法、運用公式法、分組分解法、十字相乘法。

        分式:

        ①整式a除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

        ②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

        初中數學知識點:直線的位置與常數的關系

        ①k>0則直線的傾斜角為銳角

        ②k<0則直線的傾斜角為鈍角

        ③圖像越陡,|k|越大

        ④b>0直線與y軸的交點在x軸的上方

        ⑤b<0直線與y軸的交點在x軸的下方

      新人教版初中數學知識點總結(完整版)15

        1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態,此時的支撐點或者懸掛點叫做平衡點,也叫做重心。

        2、幾種幾何圖形的重心:

        ⑴ 線段的重心就是線段的中點;

        ⑵ 平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;

        ⑶ 三角形的三條中線交于一點,這一點就是三角形的重心;

        ⑷ 任意多邊形都有重心,以多邊形的任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的'重心。

        提示:⑴ 無論幾何圖形的形狀如何,重心都有且只有一個;

        ⑵ 從物理學角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。

        3、常見圖形重心的性質:

        ⑴ 線段的重心把線段分為兩等份;

        ⑵ 平行四邊形的重心把對角線分為兩等份;

        ⑶ 三角形的重心把中線分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。

        上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數學知識。

      【初中數學知識點總結】相關文章:

      初中數學的知識點總結09-19

      初中數學的知識點總結03-11

      初中數學知識點總結10-24

      初中數學圓的知識點總結06-07

      初中數學函數知識點總結04-08

      初中數學幾何知識點總結03-01

      初中數學的知識點總結大全12-09

      初中數學知識點總結03-07

      初中數學圓知識點總結10-17

      初中數學知識點總結06-24

      主站蜘蛛池模板: 97久久综合 | 日本在线三区 | 四虎国产永久在线精品 | 女人内精69xxxxx免费软件 | 色综合视频一区中文字幕 | 国产在线国偷精品产拍 | 国内精品毛片 | 91久久久国产 | 亚洲福利精品视频 | 免费精品一区二区三区第35 | 日本在线看片免费人成视频1000 | 欧美福利小视频 | 色七七桃花综合影院 | 亚州欧美日韩 | 性生交大片免费全视频 | 韩国久久久久久级做爰片 | 午夜黄色福利 | 精品免费国产一区二区三区四区介绍 | 五月婷婷激情综合网 | 午夜精品影院 | 人妻无码vs中文字幕久久av爆 | 免费精品国产人妻国语三上悠亚 | 色综和 | 男人操女人的软件 | 黄片毛片一级片 | 四虎8848免费高清在线观看 | 精品亚洲韩国一区二区三区 | 三级黄在线免费观看 | 樱桃视频影视在线观看免费 | 国产成人超碰 | 麻豆乱码国产一区二区三区 | 国产精品婷婷 | 一二级毛片 | 免费的av片 | 日韩精品无码久久一区二区三 | 欧美国产亚洲精品 | 国产欧美日韩在线一区 | a人片在线观看 | 特级西西444ww大胆高清图片 | 朝桐光一区 | 亚洲小视频在线观看 | 亚洲 欧美 变态 国产 另类 | 中文字幕在线精品视频入口一区 | 99热最新| 国产特级视频 | av黄色免费在线观看 | 在线欧美 | 日本99精品 | 久久久久蜜桃精品成人片 | 国产精品久久久久久久久人妻 | 69成人网| 亚洲精品久久午夜麻豆 | 国产av国片精品一区二区 | 91果冻制片厂天美传媒画质好 | 少妇一级黄色片 | 亚洲国产精品色婷婷 | 国产精品色吧国产精品 | 偷拍老熟妇和小伙xxxx视频 | 欧美中文字幕在线视频 | 亚洲国产精彩中文乱码av | 狠狠综合久久久久综合网小蛇 | 伊人伊成久久人综合网996 | av第一区| 国产91色在线亚洲 | 狠狠色丁香婷婷久久综合不卡 | 一区二区三区在线视频观看 | 无码国产乱人伦偷精品视频 | 亚洲制服 视频在线观看 | 久久99精品一区二区蜜桃臀 | 日本色一区| 潮喷大喷水系列无码久久精品 | 999视频在线免费观看 | 老司机在线观看视频 | 国产精品视频3p | 婷婷五月综合激情中文字幕 | 欧美黑吊大战白妞 | 久久综合给合久久狠狠狠97色69 | 国产网红主播精品av | 五月久久综合蜜桃一区 | 日本亚洲欧洲免费无线码 | 91精品国产色综合久久不8 | 欧洲黄色一级视频 | 台湾av一区二区三区 | 精品亚洲成a人无码成a在线观看 | 色婷婷综合视频 | 国产成人精品免费看视频 | 久久久噜噜噜久久中文字幕色伊伊 | 韩日av片| 国产一区二区av在线 | 在线久草| 亚洲黄色在线视频 | 日韩欧美国内 | 女人毛片视频 | 亚洲欧美一区二区精品久久久 | 成人18禁深夜福利网站app免费 | 涩涩鲁亚洲精品一区二区 | 一边添奶一边添p好爽视频 少妇人妻在线无码天堂视频网 | 国产freexxxx性麻豆 | 欧美性xxxx狂欢老少配 |