初中數學教案合集15篇
作為一位杰出的老師,時常需要用到教案,教案有助于學生理解并掌握系統的知識。如何把教案做到重點突出呢?以下是小編為大家收集的初中數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

初中數學教案1
知識技能目標
1、理解反比例函數的圖象是雙曲線,利用描點法畫出反比例函數的圖象,說出它的性質;
2、利用反比例函數的圖象解決有關問題。
過程性目標
1、經歷對反比例函數圖象的觀察、分析、討論、概括過程,會說出它的性質;
2、探索反比例函數的圖象的性質,體會用數形結合思想解數學問題。
教學過程
一、創設情境
上節的練習中,我們畫出了問題1中函數的圖象,發現它并不是直線。那么它是怎么樣的曲線呢?本節課,我們就來討論一般的反比例函數(k是常數,k≠0)的圖象,探究它有什么性質。
二、探究歸納
1、畫出函數的圖象。
分析畫出函數圖象一般分為列表、描點、連線三個步驟,在反比例函數中自變量x≠0。
解
1、列表:這個函數中自變量x的取值范圍是不等于零的一切實數,列出x與y的對應值:
2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數的圖象(學生動手畫反比函數圖象,進一步掌握畫函數圖象的步驟)。
學生討論、交流以下問題,并將討論、交流的結果回答問題。
1、這個函數的圖象在哪兩個象限?和函數的圖象有什么不同?
2、反比例函數(k≠0)的.圖象在哪兩個象限內?由什么確定?
3、聯系一次函數的性質,你能否總結出反比例函數中隨著自變量x的增加,函數y將怎樣變化?有什么規律?
反比例函數有下列性質:
(1)當k>0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
注
1、雙曲線的兩個分支與x軸和y軸沒有交點;
2、雙曲線的兩個分支關于原點成中心對稱。
以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮上的時間少。
在問題2中反映了在面積一定的情況下,飼養場的一邊越長,另一邊越小。
三、實踐應用
例1若反比例函數的圖象在第二、四象限,求m的值。
分析由反比例函數的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(k≠0),當x>0時,y隨x的增大而增大,求一次函數y=kx—k的圖象經過的象限。
分析由于反比例函數(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數y=kx—k的圖象經過一、二、四象限。
例3已知反比例函數的圖象過點(1,—2)。
(1)求這個函數的解析式,并畫出圖象;
(2)若點A(—5,m)在圖象上,則點A關于兩坐標軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數的圖象過點(1,—2),即當x=1時,y=—2。由待定系數法可求出反比例函數解析式;再根據解析式,通過列表、描點、連線可畫出反比例函數的圖象;
(2)由點A在反比例函數的圖象上,易求出m的值,再驗證點A關于兩坐標軸和原點的對稱點是否在圖象上。
解(1)設:反比例函數的解析式為:(k≠0)。
而反比例函數的圖象過點(1,—2),即當x=1時,y=—2。
所以,k=—2。
即反比例函數的解析式為:。
(2)點A(—5,m)在反比例函數圖象上,所以,
點A的坐標為。
點A關于x軸的對稱點不在這個圖象上;
點A關于y軸的對稱點不在這個圖象上;
點A關于原點的對稱點在這個圖象上;
例4已知函數為反比例函數。
(1)求m的值;
(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?
(3)當—3≤x≤時,求此函數的最大值和最小值。
解(1)由反比例函數的定義可知:解得,m=—2。
(2)因為—2<0,所以反比例函數的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。
(3)因為在第個象限內,y隨x的增大而增大,
所以當x=時,y最大值=;
當x=—3時,y最小值=。
所以當—3≤x≤時,此函數的最大值為8,最小值為。
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
(1)寫出用高表示長的函數關系式;
(2)寫出自變量x的取值范圍;
(3)畫出函數的圖象。
解(1)因為100=5xy,所以。
(2)x>0。
(3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數的圖象只是位于第一象限內的一個分支。
四、交流反思
本節課學習了畫反比例函數的圖象和探討了反比例函數的性質。
1、反比例函數的圖象是雙曲線(hyperbola)。
2、反比例函數有如下性質:
(1)當k>0時,函數的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k<0時,函數的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
五、檢測反饋
1、在同一直角坐標系中畫出下列函數的圖象:
(1);(2)。
2、已知y是x的反比例函數,且當x=3時,y=8,求:
(1)y和x的函數關系式;
(2)當時,y的值;
(3)當x取何值時,?
3、若反比例函數的圖象在所在象限內,y隨x的增大而增大,求n的值。
4、已知反比例函數經過點A(2,—m)和B(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0
初中數學教案2
一元一次不等式組
教學目標
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;
2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的'能力;
3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。
教學難點
正確分析實際問題中的不等關系,列出不等式組。
知識重點
建立不等式組解實際問題的數學模型。
探究實際問題
出示教科書第145頁例2(略)
問:(1)你是怎樣理解“不能完成任務”的數量含義的?
(2)你是怎樣理解“提前完成任務”的數量含義的?
(3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?
在討論或議論的基礎上老師揭示:
步法一致(設、列、解、答);本質有區別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。
初中數學教案3
教學目標:
1、經歷收集數據、分析數據的活動,體會統計在實際生活中的應用。
2、收集統計在生活中應用的例子,整理收集數據的方法。
3、在解決問題的過程中,整理所學習的統計圖,和統計量,能用自己的語言描述過各種統計圖的特點,掌握整理收集數據的方法。
教學過程:
一、課前預習,出示預習提綱:
1、我們學習了哪幾種統計圖?
2、這幾種統計圖各有什么特點?
3、概率的知識有哪些?
二、展示與交流
(一)提出問題
1、(出示問題情境)我們班要和希望小學的六(1)班建立手拉手班級,怎么樣向他們介紹我們班的一些情況呢?(指名回答)
2、師:先獨立列出幾個你想調查的問題。(寫在練習本上)
3、四人小組交流,整理出你們小組都比較感興趣的`,又能實施的3個問題。(小組匯報、交流、整理)
4、接著全班匯報交流(師羅列在黑板上)
師:大家想調查這么多的問題,現在我們班選擇其中有價值又能實施的問題進行調查。(師根據生的回答進行歸納、整理)
(二)收集數據和整理數據
1、師:調查這幾個問題,你需要收集哪些數據?怎么樣收集這些數據?與同伴交流收集數據的方法。
2、師:開展實際調查的話,如何進行調查比較有效?在調查的時候,大家需要注意什么?
(三)開展調查
1、針對學生提出的某個問題,先組織小組有效的開展收集和整理數據的活動,然后把數據記錄下來,并進行整理。
2、師:誰來說一說你們小組是怎么樣分工,怎么樣調查和記錄數據的?(指名匯報)
3、全班匯總、整理、歸納各小組數據。(板書)
4、師:分析上面的數據,你能得到哪些信息?
5、師:根據整理的數據,想一想繪制什么統計圖比較好呢?
6、師:根據這些信息,你還能提出什么數學問題?
(四)回顧統計活動
1、師:在剛才的統計活動,我們都做了些什么?你能按順序說一說嗎?
師板書:提出問題——收集數據——整理數據——分析數據——作出決策。
2、收集在生活中應用統計的例子,并說說這些例子中的數據告訴人們哪些信息。(全班交流)
指名同學匯報,其他同學注意聽,并指出這個同學舉的例子中你可以獲得什么信息?
3、結合生活中的例子說說收集數據有哪些方法?
(1)先讓學生在小組內交流,引導學生結合例子(充分利用第2題中收集來
的實例)來說說自己的方法。
(2)師歸納:常用的收集數據的方法有:查閱資料、詢問他人、調查實驗等。
4、師:同學們,我們已經對統計表和統計圖進行了系統的學習,回憶一下我們已經學過了哪些統計圖,對這些統計圖,你已經知道了哪些知識?
初中數學教案4
教學目標
(一)知識認知要求
1、回顧收集數據的方式、
2、回顧收集數據時,如何保證樣本的代表性、
3、回顧頻率、頻數的概念及計算方法、
4、回顧刻畫數據波動的統計量:極差、方差、標準差的概念及計算公式、
5、能利用計算器或計算機求一組數據的算術平均數、
(二)能力訓練要求
1、熟練掌握本章的知識網絡結構、
2、經歷數據的收集與處理的過程,發展初步的統計意識和數據處理能力、
3、經歷調查、統計等活動,在活動中發 展學生解決問題的能力、
(三)情感與價值觀要求
1、通過對本章內容的回顧與思考,發展學 生用數學的意識、
2、在活動中培養學生團隊精神、
教學重點
1、建立本章的知識框架圖、
2、體會收集數據的方式,保證樣本的代表性,頻率、頻數及刻畫數據離散程度的統 計量在實際情境中的意義和應用、
教學難點
收集數據的方式、抽樣時保證樣本的代表性、頻率、頻數、刻畫數據離散程度的統計量在不同情境中的應用、
教學過程
一、導入新課
本章的內容已全部學完、現在如何讓你調查一個情況、并且根據你獲得數據,分析整理,然后寫出調查報告,我想大家現在心里應該有數、
例如,我們要調查一下“上網吧的人的年齡”這一情況,我們應如何操作?
先選擇調查方式,當然這個調查應采用抽樣調查的方式,因為我們不可能調查到所有上網吧的人,何況也沒有必要、
同學們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調查,然后再作統計分析,然后把調查結果匯報上來,我們可以比一比,哪一個組表現最好?
二、講授新課
1、舉例說明收集數據的方式主要有哪幾種類型、
2、抽樣調查時,如何保證樣本的代表性?舉例說明、
3、舉出與頻數、頻率有關的幾個生活實例?
4、刻畫數據波動的統計量有 哪些?它們有什么作用?舉例說明、
針對上面的幾個問題,同學們先獨 立思考,然后可在小組內交流你的想法,然后我們每組選出代表來回答、
(教師可參與到學生的討論中,發現同學們前面知識掌握不好的地方,及時補上)、
收集數據的方式有兩種類型:普查和抽樣調查、
例如:調查我校八年級同學每天做家庭作業的時間,我們就可以用普查的形式、
在這次調查中,總體:我校八年級全體學生每天做家庭作業的時間;個體:我校八年級每個學生每天做家庭作業的時間、
用普查的方式可以直接獲得總體情況、但有時總體中個體數目太多,普查的工作量較大;有時受客觀條件的限制,無法對所有個體進行普查;有時調查具有破壞性,不允許普查,此時可用抽樣調查、
例如把上面問題改成“調查全國八年級同學每天做家庭作業的時間”,由于個體數目太多,普查的工作量也較大,此時就采取抽樣調查,從總體中抽取一個樣本,通過樣本的特征數字來估計總體,例如平均數、中位數、眾數 、極差、方差等、
上面我們回顧了為了了解某種情況而采取的調查方式:普查和抽樣調查,但抽樣調查必須保證數據具有代表性,因為只 有這樣,你抽取的樣本才能體現出總體的情況,不然,就會失去可靠性和準確性、
例如對我們班里某門學科的成績情況,有時不僅知道平均成績,還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時,我們只要看一下每個學生的成績落在哪一個分數段,落在這個分數段的分數有幾個,表明數據落在這個小組的頻數就是多少,數據落在這個小組的頻率就是頻數與數據總個數的商、
刻畫數據波動的統計量有極差、方差、標準差、它們是用來描述一組數據的穩定性的、一般而言,一組數據的極差、方差或標準差越小,這組數據就越穩定、
例如:某農科所在8個試驗點,對甲、乙兩種玉米進行對比試驗,這兩種玉米在各試驗點的畝產量如下(單位:千克)
甲:450 460 450 430 450 460 440 460
乙:440 470 460 440 430 450 470 4 40
在這個試驗點甲、乙兩種玉米哪一種產量比較穩定?
我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩定、
還可以用方差來比較哪一種玉米穩定、
s甲2=100,s乙2=200、
s甲2<s乙2,所以甲種玉米的產量較穩定、
三、建立知識框架圖
通 過剛才的幾個問題回顧思考了我們這一章的'重點內容,下面構建本章的知識結構圖、
四、隨堂練習
例1一家電腦生產廠家在某城市三個經銷本廠產品的大商場調查,產品的銷量占這三個 大商場同類產品銷量的40%、由此在廣告中宣傳,他們的產品在國內同類產品的銷售量占40%、請你根據所學的統計知識,判斷該宣傳中的數據是否可靠:________,理由是________、
分析:這是一道判斷說理型題,它要求借助于統計知識,作出科學的判斷, 同時運 用統計原理給予準確的解釋、因此,該電腦生產廠家憑借挑選某城市經銷本產品情況,斷然說他們的產品在國內同類產品的銷量占40%,宣傳中的數據是不可靠的,其理由有二:第一,所取樣本容量太小;第二,樣本抽取缺乏代表性和廣泛性、
例2在舉國上下眾志成城抗擊“非典” 的斗爭中,疫情變化牽動著全國人民的心 、請根據下面的疫情統計圖表回答問題:
(1)圖10是5月11日至5月29日全國疫情每天新增數據統計走勢圖,觀察后回答:
①每天新增確診病例與新增疑似病例人數之和超過100人的天數共有__________天;
②在本題的統計中,新增確診病例的人數的中位數是___________;
③本題在對新增確診病例的統計中,樣本是__________,樣本容量是__________、
(2)下表是我國一段時間內全國確診病例每天新增的人數與天數的頻率統計表、(按人數分組)
①100人以下的分組組距是________;
②填寫本統計表中未完成的空格;
③在統計的這段時期中,每天新增確診
病例人數在80人以下的天數共有_________天、
解:(1)①7 ②26 ③5月11日至29日每天新增確診病例人數 19
(2)①10人 ②11 40 0、125 0、325 ③25
五.課時小結
這節課我們通過回顧與思考這一章的重點內容,共同建立的知識框架圖,并進一步用統計的思想和知識解決問題,作出決策、
六.課后作業:
七.活動與探究
從魚塘捕得同時放養的草魚240尾,從中任選9尾,稱得每尾魚的質量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計這240尾魚的總質量大約是
A、300克 B、360千克C、36千克 D、30千克
初中數學教案5
4.1二元一次方程
【教學目標】
知識與技能目標
1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會辨別一個方程是不是
二元一次方程;
2、通過探索交流,會辨別一個解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;
3、會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。過程與方法目標經歷觀察、比較、猜想、驗證等數學學習活動,培養分析問題的能力和數學說理能力;
情感與態度目標
1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進一步培養運用類比轉化的思想解決問題的能力;
2、通過對實際問題的分析,培養關注生活,進一步體會方程是刻畫現實世界的有效數學模型,培養良好的數學應用意識。
【重點、難點】
重點:二元一次方程的概念及二元一次方程的解的概念。
難點1、了解二元一次方程的解的不唯一性和相關性。即了解二元一次方程的解有無數個,
但不是任意的兩個數是它的解。
2、把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
【教學方法與教學手段】
1、通過創設問題情境,讓學生在尋求問題解決的過程中認識二元一次方程,了解二元一
次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。
2、通過觀察、思考、交流等活動,激發學習情緒,營造學習氣氛,給學生一定的時間和
空間,自主探討,了解二元一次方程的解的不唯一性和相關性。
3、通過學練結合,以游戲的`形式讓學生及時鞏固所學知識。
【教學過程】
一、創設情境導入新課
1、一個數的3倍比這個數大6,這個數是多少?
2、寫有數字5的黃卡和寫有數字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數字之和為22?
思考:這個問題中,有幾個未知數?能列一元一次方程求解嗎?
如果設黃卡取x張,藍卡取y張,你能列出方程嗎?
3、在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米。如果設轎車的速度是a千米/時,卡車的速度是b千米/時,你能列出怎樣的方程?
二、師生互動探索新知
1、推陳出新發現新知
引導學生觀察所列的方程:5x?2y?22,2a?3b?20,這兩個方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們取個名字嗎?
(板書:二元一次方程)
根據它們的共同特征,你認為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數,且含有未知數的項的次數都是一次的方程叫做二元一次方程。)
2、小試牛刀鞏固新知
判斷下列各式是不是二元一次方程
(1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y
3、師生互動再探新知
(1)什么是方程的解?(使方程兩邊的值相等的未知數的值,叫做方程的解。)
(2)你能給二元一次方程的解下一個定義嗎?(使二元一次方程兩邊的值相等的一對未
知數的值,叫做二元一次方程的一個解。)
?若未知數設為x,y,記做x?,若未知數設為a,b,記做
?y?
4、再試牛刀檢驗新知
(1)檢驗下列各組數是不是方程2a?3b?20的解:(學生感悟二元一次方程解的不唯一性)
a?4a?5a?0a?100
b?3b??1020b??b?6033
(2)你能寫出方程x-y=1的一個解嗎?(再一次讓學生感悟二元一次方程的解的不唯一性)
5、自我挑戰三探新知
有3張寫有相同數字的藍卡和2張寫有相同數字的黃卡,這五張卡片上的數字之和為10。設藍卡上的數字為x,黃卡上的數字為y,根據題意列方程。3x?2y?10
請找出這個方程的一個解,并寫出你得到這個解的過程。
學生在解二元一次方程的過程中體驗和了解二元一次方程解的不唯一性。
6、動動筆頭鞏固新知
獨立完成課本第81頁課內練習2
三、你說我說清點收獲
比較一元一次方程和二元一次方程的相同點和不同點
相同點:方程兩邊都是整式
含有未知數的項的次數都是一次
如何求一個二元一次方程的解
四、知識鞏固
1、必答題
(1)填空題:若mxy?9x?3yn?1?7是關于x,y的二元一次方程,則m?n?x?2y?5變形正確的有2
10?xx?10①x?5?4y②x?10?4y③y?④y?44
(3x?7是方程2x?y?15的解。()(2)多選題:方程
y?1
x?7
(4)判斷題:方程2x?y?15的解是。()y?1
2、搶答題
是方程2x?3y?5的一個解,求a的值。(1)已知x??2
y?a
(2)寫出一個解為x?3的二元一次方程。
y?1
3、個人魅力題
寫有數字5的黃卡和寫有數字2的藍卡若干張,問黃卡和藍卡各取幾張,才能使取到的卡片上的數字之和為22?設黃卡取x張,藍卡取y張,根據題意列方程:5x?2y?22你能完成這道題目嗎?
五、布置作業
初中數學教案6
一、課題引入
為了讓學生更好地理解正數與負數的概念,作為教師有必要了解數系的發展.從數系的發展歷程來看,微積分的基礎是實數理論,實數的基礎是有理數,而有理數的基礎則是自然數.自然數為數學結構提供了堅實的基礎.
對于“數的發展”(也即“數的擴充”),有著兩種不同的認知體系.一是數的自然擴充過程,如圖1所示,即數系發展的自然的、歷史的體系,它反映了人類對數的認識的歷史發展進程;另一是數的邏輯擴充過程,如圖2所示,即數系發展所經歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數學家構造的一種邏輯體系,其中綜合反映了現代數學中許多思想方法.
二、課題研究
在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數量.這些數量不僅與5、5000等數量有關,而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的
為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數、正分數、零,是不夠的如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的收入與支出是“意義相反”的兩回事,是不能用同一個數來表達的因此,為了準確表達支出5000元,就有必要引入了一種新數—負數.
我們把所學過的大于零的數,都稱為正數;而且還可以在正數的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數,讀作“正5”.
在正數的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構成的數統稱為負數.“-5”讀作“負5”,“-5000”讀作“負5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數量就有了不同的表達方式.
利用正數與負數可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數記作“+2”,把乙隊的凈勝球數記作“-2”.
借助實際例子能夠讓學生較好地理解為什么要引入負數,認識到負數是為了有效表達與實際生活相關的一些數量而引入的一種新數,而不是人為地“硬造”出來的一種“新數”.
三、鞏固練習
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調,又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數或負數來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數量,都用正數來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數量則用負數來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的.收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數據“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數據“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊以主客場的形式進行雙循環比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數分別是主客隊的進球數,例如3∶2表示主隊進3球客隊進2球.
初中數學教案7
教學目標
1.知識與技能
會用量角器測一個角的大小,能借助三角板畫出30,45,60,90等特殊角及用量角器畫出一個給定度數的角,會用尺規作圖畫一個角等于已知角,熟悉并理解畫法語言.
2.過程與方法
經歷本節課的畫一個角等于已知角,測量角的大小數學活動,提高學生的動手操作能力.
3.情感態度與價值觀
經歷本節課的數學活動過程,嘗試從不同角度尋求解決問題的方法,體會不同方法間的差異,能夠在測量畫圖等操作活動過程中發揮主動作用.
重、難點與關鍵
1.重點:會用量角器測量角的.大小,會用尺規畫一個角等于已知角.
2.難點:用尺規畫一個角等于已知角.
3.關鍵:引導學生積極參與畫圖的數學活動過程,才能熟練掌握畫圖步驟.
教具準備
一副三角板、量角器、多媒體設備、投影儀.
教學過程
一、引入新課
1.投影一個五角星的圖案,請學生觀察圖形.(如右圖)
初中數學教案8
一、學生起點分析
學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?
反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中
可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。
二、學習任務分析
本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理
并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:
● 知識與技能目標
1.理解勾股定理逆定理的具體內容及勾股數的概念;
2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標
1.經歷一般規律的探索過程,發展學生的抽象思維能力;
2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。
● 情感與態度目標
1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;
2.在探索過程中體驗成功的喜悅,樹立學習的自信心。
教學重點
理解勾股定理逆定理的具體內容。
三、教法學法
1.教學方法:實驗猜想歸納論證
本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗
但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:
(1)從創設問題情景入手,通過知識再現,孕育教學過程;
(2)從學生活動出發,通過以舊引新,順勢教學過程;
(3)利用探索,研究手段,通過思維深入,領悟教學過程。
2.課前準備
教具:教材、電腦、多媒體課件。
學具:教材、筆記本、課堂練習本、文具。
四、教學過程設計
本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:
登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。
第一環節:情境引入
內容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?
2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?
意圖:
通過情境的創設引入新課,激發學生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。
第二環節:合作探究
內容1:探究
下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:
1.這三組數都滿足 嗎?
2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。
意圖:
通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。
效果:
經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。
從上面的分組實驗很容易得出如下結論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
內容2:說理
提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?
意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
滿足 的三個正整數,稱為勾股數。
注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。
活動3:反思總結
提問:
1.同學們還能找出哪些勾股數呢?
2.今天的結論與前面學習勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?
4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?
意圖:進一步讓學生認識該定理與勾股定理之間的關系
第三環節:小試牛刀
內容:
1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴大相同的倍數后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習,加強對勾股定理及勾股定理逆定理認識及應用
效果
每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。
第四環節:登高望遠
內容:
1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?
解答:由題意畫出相應的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實際問題,進一步鞏固該定理。
效果:
學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。
第五環節:鞏固提高
內容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。
效果:
學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。
第六環節:交流小結
內容:
師生相互交流總結出:
1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;
2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的.;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。
意圖:
鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。
效果:
學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。
第七環節:布置作業
課本習題1.4第1,2,4題。
五、教學反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。
2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。
3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。
4.注重對學習新知理解應用偏困難的學生的進一步關注。
5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。
由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。
附:板書設計
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠
初中數學教案9
一、目的要求
1、使學生初步理解一次函數與正比例函數的概念。
2、使學生能夠根據實際問題中的條件,確定一次函數與正比例函數的解析式。
二、內容分析
1、初中主要是通過幾種簡單的函數的初步介紹來學習函數的,前面三小節,先學習函數的概念與表示法,這是為學習后面的幾種具體的函數作準備的,從本節開始,將依次學習一次函數(包括正比例函數)、二次函數與反比例函數的有關知識,大體上,每種函數是按函數的解析式、圖象及性質這個順序講述的,通過這些具體函數的學習,學生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數的知識及有關的數學思想方法在解決實際問題中的應用。
2、舊教材在講幾個具體的函數時,是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學生在小學數學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規津,從函數角度看,一次函數的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數就要復雜一些了,特別是,反比例函數的圖象是由兩條曲線組成的,先學習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學習效益,又便于學生了解正比例函數與一次函數的關系,從而,可以更好地理解這兩種函數的概念、圖象與性質。
3、“函數及其圖象”這一章的重點是一次函數的概念、圖象和性質,一方面,在學生初次接觸函數的有關內容時,一定要結合具體函數進行學習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規定的幾種具體函數中,一次函數是最基本的,教科書對一次函數的討論也比較全面。通過一次函數的學習,學生可以對函數的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數、反比例函數的學習方法。
三、教學過程
復習提問:
1、什么是函數?
2、函數有哪幾種表示方法?
3、舉出幾個函數的例子。
新課講解:
可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數的例子。然后讓學生觀察這些例子(實際上均是一次函數的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:
(1)這些式子表示的是什么關系?(在學生明確這些式子表示函數關系后,可指出,這是函數。)
(2)這些函數中的自變量是什么?函數是什么?(在學生分清后,可指出,式子中等號左邊的.y與s是函數,等號右邊是一個代數式,其中的字母x與t是自變量。)
(3)在這些函數式中,表示函數的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設問,最后給出一次函數的定義。
一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。
對這個定義,要注意:
(1)x是變量,k,b是常數;
(2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點,不一定向學生講述。)
由一次函數出發,當常數b=0時,一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。
在講述正比例函數時,首先,要注意適當復習小學學過的正比例關系,小學數學是這樣陳述的:
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。
寫成式子是(一定)
需指出,小學因為沒有學過負數,實際的例子都是k>0的例子,對于正比例函數,k也為負數。
其次,要注意引導學生找出一次函數與正比例函數之間的關系:正比例函數是特殊的一次函數。
課堂練習:
教科書13、4節練習第1題.
初中數學教案10
[教學目標]
1、體會并了解反比例函數的圖象的意義
2、能列表、描點、連線法畫出反比例函數的圖象
3、通過反比例函數的圖象的分析,探索并掌握反比例函數的圖象的性質
[教學重點和難點]
本節教學的重點是反比例函數的圖象及圖象的性質
由于反比例函數的圖象分兩支,給畫圖帶來了復雜性是本節教學的難點
[教學過程]
1、情境創設
可以從復習一次函數的圖象開始:你還記得一次函數的圖象嗎?在回憶與交流中,進一步認識函數圖象的直觀有助于理解函數的性質。轉而導人關注新的函數——反比例函數的圖象研究:反比例函數的圖象又會是什么樣子呢?
2、探索活動
探索活動1反比例函數y?
由于反比例函數y?
要分幾個層次來探求:
(1)可以先估計——例如:位置(圖象所在象限、圖象與坐標軸的交點等)、趨勢(上升、下降等);
(2)方法與步驟——利用描點作圖;
列表:取自變量x的哪些值?——x是不為零的`任何實數,所以不能取x的值的為零,但仍可以以零為基準,左右均勻,對稱地取值。
描點:依據什么(數據、方法)找點?
連線:怎樣連線?——可在各個象限內按照自變量從小到大的順序用兩條光滑的曲線把所描的點連接起來。
探索活動2反比例函數y??2的圖象.x2的圖象是曲線型的,且分成兩支.對此,學生第一次接觸有一定的難度,因此需x2的圖象.x
可以引導學生采用多種方式進行自主探索活動:
2的圖象的方式與步驟進行自主探索其圖象;x
222(2)可以通過探索函數y?與y??之間的關系,畫出y??的圖象.xxx
22探索活動3反比例函數y??與y?的圖象有什么共同特征?xx(1)可以用畫反比例函數y?
引導學生從通過與一次函數的圖象的對比感受反比例函數圖象“曲線”及“兩支”的特征.(即雙曲線)反比例函數y?
k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當k?0時,圖象在第一、第x
初中數學教案11
一、 教學目標
1、 知識與技能目標
掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。
2、 能力與過程目標
經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
二、 教學重點、難點
重點:運用有理數乘法法則正確進行計算。
難點:有理數乘法法則的探索過程,符號法則及對法則的理解。
三、 教學過程
1、 創設問題情景,激發學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?學生:……
教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
(1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規定向東的方向為正方向,向西的'方向為負方向。
① 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結果:向 運動 米
2 ×3=
② -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結果:向 運動 米
-2 ×3=
③ 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結果:向 運動 米
(-2) ×(-3)=
(2)學生歸納法則
①符號:在上述4個式子中,我們只看符號,有什么規律?
(+)×(+)=( ) 同號得
(-)×(+)=( ) 異號得
(+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
②積的絕對值等于 。
③任何數與零相乘,積仍為 。
(3)師生共同用文字敘述有理數乘法法則。
3、 運用法則計算,鞏固法則。
(1)教師按課本P75 例1板書,要求學生述說每一步理由。
(2)引導學生觀察、分析例子中兩因數的關系,得出兩個有理數互為倒數,它們的積為 。
(3)學生做練習,教師評析。
(4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。
初中數學教案12
教學目標
1, 整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2, 能區分兩種不同意義的量,會用符號表示正數和負數;
3, 體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。
教學難點 正確區分兩種不同意義的量。
知識重點 兩種相反意義的量
教學過程(師生活動) 設計理念
設置情境
引入課題 上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生
活中僅有這些“以前學過的數”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。 先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中共有相反意義的`量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多
地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興趣,所以創設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知 問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數和負數的表示.
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量. 這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。
舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維.
問題4:請同學們舉出用正數和負數表示的例子.
問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習 教科書第5頁練習
小結與作業
課堂小結 圍繞下面兩點,以師生共同交流的方式進行:
1, 0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;
2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。
本課作業 教科書第7頁習題1.1 第1,2,4,5(第3題作為下節課的思考題。
作業可設必做題和選 做題,體現要求的層次性,以滿足不同學生的需要
初中數學教案13
教學目的
1、使學生了解無理數和實數的概念,掌握實數的分類,會準確判斷一個數是有理數還是無理數。
2、使學生能了解實數絕對值的意義。
3、使學生能了解數軸上的點具有一一對應關系。
4、由實數的分類,滲透數學分類的思想。
5、由實數與數軸的一一對應,滲透數形結合的`思想。
教學分析
重點:無理數及實數的概念。
難點:有理數與無理數的區別,點與數的一一對應。
教學過程
一、復習
1、什么叫有理數?
2、有理數可以如何分類?
(按定義分與按大小分。)
二、新授
1、無理數定義:無限不循環小數叫做無理數。
判斷:無限小數都是無理數;無理數都是無限小數;帶根號的數都是無理數。
2、實數的定義:有理數與無理數統稱為實數。
3、按課本中列表,將各數間的聯系介紹一下。
除了按定義還能按大小寫出列表。
4、實數的相反數:
5、實數的絕對值:
6、實數的運算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
(1)任何實數的偶次冪是正實數。( )
(2)在實數范圍內,若| x|=|y|則x=y。( )
(3)0是最小的實數。( )
(4)0是絕對值最小的實數。( )
解:略
三、練習
P148 練習:3、4、5、6。
四、小結
1、今天我們學習了實數,請同學們首先要清楚,實數是如何定義的,它與有理數是怎樣的關系,二是對實數兩種不同的分類要清楚。
2、要對應有理數的相反數與絕對值定義及運算律和運算性質,來理解在實數中的運用。
五、作業
1、P150 習題A:3。
2、基礎訓練:同步練習1。
初中數學教案14
教學目標
1.使學生正確理解的意義,掌握的三要素;
2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;
3.使學生初步理解數形結合的思想方法.
教學重點和難點
重點:初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數.
難點:正確理解有理數與上點的對應關系.
課堂教學過程 設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?
待學生回答后,教師指出,這就是我們本節課所要學習的內容——.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的.數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)
在此基礎上,給出的定義,即規定了原點、正方向和單位長度的直線叫做.
進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習
例1 畫一個,并在上畫出表示下列各數的點:
例2 指出上A,B,C,D,E各點分別表示什么數.
課堂練習
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數?
最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.
本節課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.
五、作業
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數的點.
(2)A,H,D,E,O各點分別表示什么數?
2.在下面上,A,B,C,D各點分別表示什么數?
3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數學教案15
教學目標:
1、理解并掌握三角形中位線的概念、性質,會利用三角形中位線的性質解決有關問題。
2、經歷探索三角形中位線性質的過程,讓學生實現動手實踐、自主探索、合作交流的`學習過程。
3、通過對問題的探索研究,培養學生分析問題和解決問題的能力以及思維的靈活性。
4、培養學生大膽猜想、合理論證的科學精神。
教學重點:
探索并運用三角形中位線的性質。
教學難點:
運用轉化思想解決有關問題。
教學方法:
創設情境——建立數學模型——應用——拓展提高
教學過程:
情境創設:測量不可達兩點距離。
探索活動:
活動一:剪紙拼圖。
操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形。
觀察、猜想: 四邊形BCFD是什么四邊形。
探索: 如何說明四邊形BCFD是平行四邊形?
活動二:探索三角形中位線的性質。
應用
練習及解決情境問題。
例題教學
操作——猜想——驗證
拓展:數學實驗室
小結:布置作業。
【初中數學教案】相關文章:
初中數學教案04-22
初中數學教案06-11
(實用)初中數學教案11-29
【推薦】初中數學教案07-04
初中數學教案(精選15篇)07-17
初中數學教案(15篇)09-23
初中數學教案精選15篇09-29
初中數學教案(精選15篇)06-30
初中數學教案(精選22篇)07-01
初中數學教案15篇05-22