色噜噜人体337p人体 I 超碰97观看 I 91久久香蕉国产日韩欧美9色 I 色婷婷我要去我去也 I 日本午夜a I 国产av高清怡春院 I 桃色精品 I 91香蕉国产 I 另类小说第一页 I 日操夜夜操 I 久久性色 I 日韩欧在线 I 国产深夜在线观看 I 免费的av I 18在线观看视频 I 他也色在线视频 I 亚洲熟女中文字幕男人总站 I 亚洲国产综合精品中文第一 I 人妻丰满熟av无码区hd I 新黄色网址 I 国产精品真实灌醉女在线播放 I 欧美巨大荫蒂茸毛毛人妖 I 国产一区欧美 I 欧洲亚洲1卡二卡三卡2021 I 国产亚洲欧美在线观看三区 I 97精品无人区乱码在线观看 I 欧美妇人 I 96精品在线视频 I 国产人免费视频在线观看 I 91麻豆国产福利在线观看

實(shí)用文檔>弦切角數(shù)學(xué)教案設(shè)計(jì)

弦切角數(shù)學(xué)教案設(shè)計(jì)

時間:2024-05-28 13:00:46

弦切角數(shù)學(xué)教案設(shè)計(jì)

弦切角數(shù)學(xué)教案設(shè)計(jì)

弦切角數(shù)學(xué)教案設(shè)計(jì)

  1、教材分析

  (1)知識結(jié)構(gòu)

  (2)重點(diǎn)、難點(diǎn)分析

  重點(diǎn):弦切角定理是本節(jié)的重點(diǎn)也是本章的重點(diǎn)內(nèi)容之一,它在證明角相等、線段相等、線段成比例等問題時,有重要的作用;它與圓心角和圓周角以及直線形角的性質(zhì)構(gòu)成了完美的角的體系,屬于工具知識之一.

  難點(diǎn):弦切角定理的證明.因?yàn)樵谧C明過程當(dāng)中包含了由“一般到特殊”的數(shù)學(xué)思想方法和完全歸納法的數(shù)學(xué)思想,雖然在圓周角定理的證明中應(yīng)用過,但對學(xué)生來說是生疏的,因此它是教學(xué)中的難點(diǎn).

  2、教學(xué)建議

  (1)教師在教學(xué)過程中,主要是設(shè)置學(xué)習(xí)情境,組織或引導(dǎo)學(xué)生發(fā)現(xiàn)問題、分析問題、研究問題和歸納結(jié)論,應(yīng)用知識培養(yǎng)學(xué)生的數(shù)學(xué)能力;在學(xué)生主體參與的學(xué)習(xí)過程當(dāng)中,讓學(xué)生學(xué)會學(xué)習(xí),并獲得新知識;

  (2)學(xué)習(xí)時應(yīng)注意:

  (Ⅰ)弦切角的識別由三要素構(gòu)成:①頂點(diǎn)為切點(diǎn),②一邊為切線,③一邊為過切點(diǎn)的弦;

  (Ⅱ)在使用弦切角定理時,首先要根據(jù)圖形準(zhǔn)確找到弦切角和它們所夾弧上的圓周角;

  (Ⅲ)要注意弦切角定理的證明,體現(xiàn)了從特殊到一般的證明思路.

  教學(xué)目標(biāo):

  1、理解弦切角的概念;

  2、掌握弦切角定理及推論,并會運(yùn)用它們解決有關(guān)問題;

  3、進(jìn)一步理解化歸和分類討論的數(shù)學(xué)思想方法以及完全歸納的證明方法.

  教學(xué)重點(diǎn):弦切角定理及其應(yīng)用是重點(diǎn).

  教學(xué)難點(diǎn):弦切角定理的證明是難點(diǎn).

  教學(xué)活動設(shè)計(jì):

  (一)創(chuàng)設(shè)情境,以舊探新

  1、復(fù)習(xí):什么樣的角是圓周角?

  2、弦切角的概念:

  電腦顯示:圓周角∠CAB,讓射線AC繞點(diǎn)A旋轉(zhuǎn),產(chǎn)生無數(shù)個圓周角,當(dāng)AC繞點(diǎn)A 旋轉(zhuǎn)至與圓相切時,得∠BAE.

  引導(dǎo)學(xué)生共同觀察、分析∠BAE的特點(diǎn):

  (1)頂點(diǎn)在圓周上;

  (2)一邊與圓相交;

  (3)一邊與圓相切.

  弦切角的定義:

  頂點(diǎn)在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角。

  3、用反例圖形剖析定義,揭示概念本質(zhì)屬性:

  判斷下列各圖形中的角是不是弦切角,并說明理由:

  以下各圖中的角都不是弦切角.

  圖(1)中,缺少“頂點(diǎn)在圓上”的條件;

  圖(2)中,缺少“一邊和圓相交”的條件;

  圖(3)中,缺少“一邊和圓相切”的條件;

  圖(4)中,缺少“頂點(diǎn)在圓上”和“一邊和圓相切”兩個條件.

  通過以上分析,使全體學(xué)生明確:弦切角定義中的三個條件缺一不可。

  (二)觀察、猜想

  1、觀察:(電腦動畫,使C點(diǎn)變動)

  觀察∠P與∠BAC的關(guān)系.

  2、猜想:∠P=∠BAC

  (三)類比聯(lián)想、論證

  1、首先讓學(xué)生回憶聯(lián)想:

  (1)圓周角定理的證明采用了什么方法?

  (2)既然弦切角可由圓周角演變而來,那么上述猜想是否可用類似的方法來證明呢?

  2、分類:教師引導(dǎo)學(xué)生觀察圖形,當(dāng)固定切線,讓過切點(diǎn)的弦運(yùn)動,可發(fā)現(xiàn)一個圓的弦切角有無數(shù)個.

  如圖.由此發(fā)現(xiàn),弦切角可分為三類:

  (1)圓心在角的外部;

  (2)圓心在角的一邊上;

  (3)圓心在角的內(nèi)部.

  3、遷移圓周角定理的證明方法

  先證明了特殊情況,在考慮圓心在弦切角的外部和內(nèi)部兩種情況.

  組織學(xué)生討論:怎樣將一般情況的證明轉(zhuǎn)化為特殊情況.

  如圖 (1),圓心O在∠CAB外,作⊙O的直徑AQ,連結(jié)PQ,則∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.

  如圖 (2),圓心O在∠CAB內(nèi),作⊙O的直徑AQ.連結(jié)PQ,則∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,

  (在此基礎(chǔ)上,給出證明,寫出完整的證明過程)

  回顧證明方法:將情形圖都化歸至情形圖1,利用角的合成、對三種情況進(jìn)行完 全歸納、從而證明了上述猜想是正確的,得:

  弦切角定理:弦切角等于它所夾的弧對的圓周角.

  4.深化結(jié)論.

  練習(xí)1 直線AB和圓相切于點(diǎn)P,PC,PD為弦,指出圖中所有的弦切角以及它們所夾的弧.

  練習(xí)2 如圖,DE切⊙O于A,AB,AC是⊙O 的弦,若=,那么∠DAB和∠EAC是否相等?為什么?

  分析:由于 和 分別是兩個弦切角∠OAB和∠EAC所夾的弧.而 = .連結(jié)B,C,易證∠B=∠C.于是得到∠DAB=∠EAC.

  由此得出:

  推論:若兩弦切角所夾的弧相等,則這兩個弦切角也相等.

  (四)應(yīng)用

  例1如圖,已知AB是⊙O的直徑,AC是弦,直線CE和⊙O 切于點(diǎn)C,AD⊥CE,垂足為D

  求證:AC平分∠BAD.

  思路一:要證∠BAC=∠CAD,可證這兩角所在的直角三角形相似,于是連結(jié)BC,得Rt△ACB,只需證∠ACD=∠B.

  證明:(學(xué)生板書)

  組織學(xué)生積極思考.可否用前邊學(xué)過的知識證明此題?由學(xué)生回答,教師小結(jié).

  思路二,連結(jié)OC,由切線性質(zhì),可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可證得結(jié)論。

  思路三,過C作CF⊥AB,交⊙O于P,連結(jié)AF.由垂徑定理可知∠1=∠3,又根據(jù)弦切角定理有∠2=∠1,于是∠2=∠3,進(jìn)而可證明結(jié)論成立.

  練習(xí)題

  1、如圖,AB為⊙O的直徑,直線EF切⊙O于C,若∠BAC=56°,則∠ECA=______度.

  2、AB切⊙O于A點(diǎn),圓周被AC所分成的優(yōu)弧與劣弧之比為3:1,則夾劣弧的弦切角∠BAC=________

  3、如圖,經(jīng)過⊙O上的點(diǎn)T的切線和弦AB的延長線相交于點(diǎn)C.

  求證:∠ATC=∠TBC.

  (此題為課本的練習(xí)題,證明方法較多,組織學(xué)生討論,歸納證法.)

  (五)歸納小結(jié)

  教師組織學(xué)生歸納:

  (1)這節(jié)課我們主要學(xué)習(xí)的知識;

  (2)在學(xué)習(xí)過程當(dāng)中應(yīng)用哪些重要的數(shù)學(xué)思想方法?

  (六)作業(yè):教材P13l習(xí)題7.4A組l(2),5,6,7題.

  探究活動

  一個角的頂點(diǎn)在圓上,它的度數(shù)等于它所夾的弧對的圓周角的度數(shù),試探討該角是否圓周角?若不是,請舉出反例;若是圓周角,請給出證明.

  提示:是圓周角(它是弦切角定理的逆命題).分三種情況證明(證明略).

【弦切角數(shù)學(xué)教案設(shè)計(jì)】相關(guān)文章:

數(shù)學(xué)1至5的教案設(shè)計(jì)03-20

大班數(shù)學(xué)教案設(shè)計(jì)03-20

命題及其關(guān)系數(shù)學(xué)教案設(shè)計(jì)03-20

中班數(shù)學(xué)裝水果籃教案設(shè)計(jì)03-20

幼兒園中班數(shù)學(xué)教案設(shè)計(jì)《有趣的數(shù)字》(通用13篇)04-26

讓心飛翔教案設(shè)計(jì)01-24

教案設(shè)計(jì):破釜沉舟07-19

《天窗》優(yōu)秀教案設(shè)計(jì)06-08

《楊氏之子》教案設(shè)計(jì)02-11

認(rèn)識南瓜教案設(shè)計(jì)02-11

用戶協(xié)議
主站蜘蛛池模板: 国产免费av一区二区 | 在线综合视频 | 中文字幕狠狠干 | 亚洲 日韩 欧美 有码 在线 | 潮喷失禁大喷水av无码 | 精品久久久久成人码免费动漫 | 精品专区一区二区 | 青青青青青青青青草 | 一逼色 | 午夜精品视频一区二区三区在线看 | 成人精品视频一区二区三区尤物 | 2019天天干天天操 | 成人国产视频在线观看 | 国产成年无码av片在线 | 伊人色综合久久天天人手人婷 | 国产凹凸久久精品一区 | 久久一级片 | 午夜国产伦理 | 精品国产一区二区三区四区四 | 精品无码成人网站久久久久久 | 欧美福利小视频 | 久久精品国产亚洲精品2020 | 深夜男人网站 | 黄色一级片a | 一区二区三区国产最好的精华液色 | 青青久久精品 | 国产亚洲精品欧洲在线视频 | 国产在线1区 | 亚洲国产精品无码久久 | 国产av激情无码久久 | 亚洲欧美另类综合 | 精品日韩免费 | 午夜精品视频成人精品视频 | 亚洲欧美偷拍视频 | 欧美日本三级少妇三级久久 | 日本伊人色综合网 | 亚洲18页 | 动漫精品无码h在线观看 | 国产精品一区二区熟女不卡 | 在线播放国产一区二区三区 | 国产天堂网站 | 国产免费午夜福利片在线 | 蜜桃av成人 | 岛国av噜噜噜久久久狠狠av | 亚洲 欧美 日韩 综合aⅴ | 99久精品视频 | 91免费久久| 成人羞羞国产免费网站 | 亚洲欧洲成人a∨在线观看 精品国产一区二区三区av片 | 成人午夜大片免费看爽爽爽 | 99久久免费精品国产男女性高好 | a级黄色影院| 国产精品夜夜春夜夜爽久久 | 暴力强奷在线播放无码 | 亚洲日本成人 | 婷婷九月激情 | 欧日韩在线观看 | 国产午夜高清高清在线观看 | 国产精品尤物麻豆一区二区三区 | 国产亚洲va综合人人澡精品 | 日本一区二区在线播放 | 亚洲va久久久噜噜噜久久无码 | 992tv成人免费视频 | 青青视频免费在线 | 久久国内视频 | 中文字幕日韩精品欧美一区蜜桃网 | 国产又大又黄的视频 | 国内精品久久久人妻中文字幕 | 曰韩无码av片免费播放不卡 | 男女啪啪免费观看的网址 | 一二三区精品视频 | 三上悠亚激情av一区二区三区 | 男人天堂视频在线 | 人妻大战黑人白浆狂泄 | 四虎影院观看 | 国产99视频精品免费观看6 | 婷婷久久久久 | 狠狠cao日日橹夜夜十橹 | 天堂久久天堂综合色 | 欧美精品欧美极品欧美激情 | 亚洲天堂小视频 | 日本人配人免费视频人 | 日日夜夜狠狠干 | 伊人精品一区二区三区 | 欧美一区二区三区喷汁尤物 | 久久国产热精品波多野结衣av | 日韩欧美mv在线观看免费 | 小受被狂c躁到高潮失禁作文 | 亚洲国产不卡视频 | 在线观看网页视频 | 国产香蕉视频 | 欧美色第一页 | 国产精品高潮呻吟三区四区 | 久久久人人人婷婷色东京热 | 国产丝袜肉丝视频在线 | 国产又黄又粗又硬又爽又猛的视频 | 色欲综合视频天天天综合网站 | 国产主播奶水喷出 | 中文字幕av无码一区二区蜜芽三区 |